Generating Hypoimmunogenic Human Embryonic Stem Cells by the Disruption of Beta 2-Microglobulin

Materials and Methods

C C

TALEN E D

D a . . HLA C a I-D ESC L

H1 X1 a a HLA a I-ESC .F , TALEN a

R Ta . P a Ca Ra . a Ra-T P a Ca Ra .

T a RNA a a a g a RN a (Q a),
 a a a a a a a a
 a a (RT-PCR). RT-PCR a a
E Ma a a - PCR
 SYBR G - a PCR Ma (TOYOBO).
S a a a a (G3PD). T a
S a Ta 1.

W B. q

FACS

I a a a C Ta aa.

T a a a a -O 4 (1:100, Sa a C B g,), a -S 2 (1:1000, M), a - Na g (1:150, Sa a C B g,), a -T a-1-81 (1:150, C), a -T a-1-60 (1:150, C), a - CDH1 (1:100, BD), a -SSEA1 (A , 1:500, D - a S H a Ba), a -SSEA3 (A , 1:400, D a S H a Ba) a a - SSEA4 (A , 1:400, D a S H a Ba) a SEA4 (A , 1:400, D a S H a Ba) a SEA4 (A , 1:400, D a S H a Ba) a - SSEA4 (A , 1:100, D a S H a Ba) a - T 1 (1:100, Sa a C B a) a a - T 1 (1:100, Sa a C B a)

(EB) a $_{\bf g}$. 1, 10^6 ESC a (EB) a g. 1 10° ESC a

a 100-μL .T

a a a 6-8-
Ba / .T a a 48
a a a a , 4% a a a a a a

20 % a 30 % a 4 C. g. .T

a a 20 μ g a a,

T a a a a g 10 a .

T a a a a a CD3 (1: 400, Å a) a

KIRA1 (1:200 Å a) KLRA1 (1:200, A a). a ESC .T CD3-, KLRA1-, a , a , , , , a 🙀 .

Ta, aF, a,

a a , , , , a / (NOD/SCID) (2 - (NOD/SCID) (a a 5, 10⁶). A a a (NOD/SCID) (a -, **a**, . RaPaaa Zag U A a Ca C .

E A a

a a (PBMC) aa a a a a E aa 5 105 a a $5 \cdot 10^5$ a PBMC a a a a . T (Ma) g IFN g a a a a . T a a a a (CTL) a _{qe}a aa _{qe}.

Sa a A a

A a a a a SEM. S a a g a a a a g a a S , a a p < 0.05.

Results

D Ba2-M eg. ESC TALEN

TALEN . a

a $(F_{\underline{\alpha}}.1)$.

_«a, HLACa IE , β2 N ESC I

a, a a HLA-A, -B a -C [22]. M , β2 RNA a a IFN- γ a , $\beta 2$ +/- a $\beta 2$ -/- ESC . H , $\beta 2$ (F_g . 2) a $\beta 2$ (F_g . 2) $\beta 2$ ESC β^{2} , β^{2} β^{2} β^{2} β^{2} β^{2} β^{2} β^{2} HLA-A, -B a -C RNA $(F_{\underline{\alpha}}, 2, a)$ $(F_{\boldsymbol{g}}, 2), \qquad \text{IFN-}\gamma \quad \text{a} \quad .$ $\text{H} \quad , \qquad \text{a HLA a I}$ $\text{a} \quad \beta 2 \stackrel{-/-}{=} \text{ESC } (F_{\boldsymbol{g}}, 2_{\boldsymbol{g}}), \qquad \text{a IFN-}\gamma$ $\text{a} \quad .\text{H} \quad , \qquad \text{ESC} \quad \text{HLA a I}$ $\text{a} \quad \text{a} \quad \text{a} \quad \text{ESC . I a -}$, HLA-A, -B a -C a a a a lFN- γ (F_q . 2_q). T , a HLA _α β2 _α .

T P HLACa I-D ESC

N , a a

IFN- γ (F_g . 4a). T Taaa, g $(\beta 2^{-/-})^{3}$ ESC T g a ESC , $\beta 2^{\frac{\beta}{4}}$ a $\beta 2^{-/-}$ ESC a a Ba /
a 2 a T a a a aa, .I a , , a a T $(F_{\underline{\alpha}}, 4)$ a a (NK) $(F_{\underline{\alpha}} . 4)$ $(\beta 2^{+/-})$ a a ESC.T (β2 ^{-/-}) ESC ESC a, a, a, a . Ba /

Discussion

, a a a a a ESC .H , a a a a a PSC \mathbf{a} , \mathbf{a} , \mathbf{a} , \mathbf{a} [25, 26]. A a , a , a a PSC ESC a PSC **g** , a a a a a a, a a a ESC , , a a , a a ESC-T , HLA C a Ia, a , a, .I a a ESC-. . HLA a I (CTL) a g [27]. A g HLA a I a NK , a HLA a I , a a , CTL, g HLA a I NK a a a a a CTL ESC . NK .U T a a a a NK - a -[29], a , a a [30, 31]. T , a a a a , $T \quad , \quad \beta 2 \quad - \quad ESC$ a , a , 🙀 a , **a** , , a [32]. I , , a , a

Ba / . T . a . - a a a . , a a . . -330(.)18(a).4()15..59. 215.6(a)-10 . . . -33 .

- Acknowledgments T a a a y a (31025016),

 Na a S F D Y S a (31025016),

 M S a T C a (2011CB965101),

 Na a Na a S F a C a (31271577), M

 S a T C a (2012AA020503, 2012CB966601,

 a 2011AA020108), F a a R a F C a
- Submission Statement T a a a a a a a

References

- 1. T , J. A., I , E , J., S a , S. S., a. (1998). E , a a , Science, 282, 1145–1147.
- 3. B a a, M. (2007). H a a American Society of Hematology American Society of Hematology

 Education Program 11–16

- 7. C , A. P., La , D., T , A., & B , R. L. (2008). T a a , - - a a . *Nature*, 453,
- 8. Ta a a , K., Ta a , K., O , M., a . (2007). I a a a a
- a , . . Cell, 131, 861–872. 9. Y , J., V a , M. A., S $_{\bf g}$ a-O , , K., a . (2007). I a , a . . Sci-
- ence, 318, 1917–1920.

 10. P , M. C., & Nag , A. (2012). C : : : g a . Stem Cells. 30, 10–14.
- 11. G , A., L , Z., F , H. L., a . (2011). S a a-aa . Nature, 471, 63–67.
- 12. Ma -Ta , K., & X , R. H. (2012). C a . Stem Cells, 30, 22–27.

- Research, 89, 7/5–7/8.

 14. L , G., X , Y., O a , Q., a. (2009). HLA- a a a a a a a a C a. Cell Stem Cell, 5, 461–465.