# Development of an enzyme-linked-immunosorbent-assay technique for accurate identification of poorly preserved silks unearthed in ancient tombs

Qin Zheng<sup>1</sup> · Xiaofeng Wu<sup>1</sup> · Hailing Zheng<sup>2</sup> · Yang Zhou<sup>2</sup>

Rece ed: 15 N e be 2014/Re ed: 4 Mac 2015/Acce ed: 4 Mac 2015/P h ed.r., r e: 25 Mac 2015 © S, r S, e - Ve, & Be', r He de bez 2015

 $\mathbf{x}$   $\mathbf{a}_1$ ,  $\mathbf{c}\mathbf{a}_1$ ,  $\mathbf{a}\mathbf{c}\mathbf{e}_1$ ,  $\mathbf{e}\mathbf{e}_1$ ,  $\mathbf{a}\mathbf{b}_1$ ,  $\mathbf{f}$  $\mathbf{z}_{1} = \mathbf{e}_{1}\mathbf{r}$  ed  $\mathbf{r}_{1}$  b  $\mathbf{r}_{1}$  a a (ELISA)  $\mathbf{f}_{1}$  c  $\mathbf{a}$  a c  $\mathbf{e}_{1}$  z.r.S.a.c.e., Te dea, f.r.S., e. dr. cr. e a-, **r**, **c r c e** , **r**, **r e** . S**r** ce a <sub>1</sub>, a **e** 1990, e<sup>t</sup> e a ... de ale ed. ... ecr en de trale, ece ... dr  $\mathbf{f}$  a c as  $\mathbf{h}$  s call  $\mathbf{f}$  ec  $\mathbf{g}$  ed br e,  $\mathbf{r}$  d  $\mathbf{f}$  ace  $\mathbf{f}$  b  $\mathbf{h}$  d e  $e \mathbf{f} \mathbf{r} d_{\mathbf{r}} \mathbf{r} a$   $\mathbf{f} \mathbf{a} c$   $\mathbf{f} e \mathbf{r} a \mathbf{a} \mathbf{b} \mathbf{r} d \mathbf{e} \mathbf{r} \mathbf{r} \mathbf{r}$  [8, 9]. I, ecc. eq., ecr' e a bec 'ar, edr e d, f, d ace, br de, (r q dr 3 c c c - 63 ..., ab e, a da a s, e) r a ce ar rs, [10, 11]. S e e e a c e , a e e c e , e d e ELISA e , d a a , le pla lecre , resae ea , car  $\mathbf{a}$  d, c  $\mathbf{e}$ ,  $\mathbf{f}$  c  $\mathbf{r}$  a,  $\mathbf{e}$ ,  $\mathbf{f}$  b, d-ba ed a  $\mathbf{e}$  a,  $\mathbf{r}$ , ad  $\mathbf{r}$  a Cree, a [12]. Tebr drs aca, race Cree e je a'ea, ber r e Saedb' rS e ELISA e d, ad ere , . . SS e. . a . e . e . f . ab r ad charle le car a cebrd, est adç er be est f be [13]. Us, e  $c_1$ ,  $c_2$ ,  $c_3$ ,  $c_4$ ,  $c_5$ ,  $c_6$ ed, a'e, ec, a e, b, e'a, r, f, e, e, e, ELISA de  $ecfc de fca_r^{\dagger} f de a_r ed$ , a e Adncer, c, a \_ a, ied, a e de e, c, f, e -. df, ... drS., , e.c.

Si f be,  $a \in c^1$  ... ed, f af b, ..., er (f b, r)  $c_1 \in c_2$ a da ... r'dr 3 3, e . er ('e or ) [14, 15]! Se or . e edre e ears , ce , ears ther a le a 'cr...e.f., [16].'S, fb.r.r.'a ez. e, b.'a r cra aça, e e çarr arra, A arase er, fb, r'cr., fa'ea. car', s car, a d'P25 , er [17]. Te ea car, ade, fa, -c, e is r b<sub>1</sub> de ed b . . . Nard C-e ra s e . . T e b, f = (1 - c) + (1 - c) $f_1 e ea$ , f a GX d e de f, <math>e eX, A, ar 65%, Ser 23%, a dT<sub>1</sub> r 10%. f.  $e_1 e_2 e_3 c_3$ , a ed a, ederfbr.TeGXaed, bedr 12d ar., de Sir a ed GX d ar , 1 39, 612 a r, ac d e a a ed b 11r ea, dr. ca, c, e, fabr da, e, r ce. M, ... f e GX'd e de r , a e , e e l'a a , f . e . , e a e de GAGAGS (432 c e) a d CAGAGY (120 c e), c 3e e acc r  $f_1$  72 %, f  $e_1$  c  $e_{1}$   $e_{1}$   $x_{1}$   $d_{1}$   $d_{1}$   $d_{2}$   $e_{1}$   $f_{1}$   $f_{2}$   $f_{1}$   $f_{2}$   $f_{2}$ rdcae.d.eb, f e, er  $f_1$ , g ,  $\beta$  , ee, cr.  $\beta$  ea rs, e  $\beta$ - ee, a d e b r da e ce b ea  $\beta = \beta_{-1}$  and, c ab r  $\beta_{-1}$  e dec ar  $\beta_{-1}$  c a  $\beta_{-1}$  e dec ar  $\beta_{-1}$  e dec ar  $\beta_{-1}$  c a  $\beta_{-1}$  e dec ar  $\beta_{-1}$  e d r [3, 18]. Teee c  $e\beta$ - ee c  $a_1r e_{\beta}$  r r'GXd ar, a ecaace, c, bs, flefbe, a da S. dc e ca, e [5, 19].

B et ., , , ced, er q ded , ar ... e. T et ... a. f. , de q be . e e d a d ... de q b., r q dr g ... e e a a.r. f. ef b.r. -, er a ... b d a d de e r a r f. e. ... a d e ec ..., a d e e f. ca r f. e. ... ab, ... f. a a... ca e ... df, ... e de f ca r f. a, ... a ... E ... e ecr d a., e ... ed. e abd, de la jerea edf, ace., bf dffee e, d.

## Materials and methods

### Choice and preparation of assay

T e a r, -ac d e c ce f e f b r ea c ar f Bombyx mori (E ec, r c S e c a Ma e a (ESM) F3. S1) a e e e d f e NCBI b c da aba e (http://www.ncbi.nlm.nih.gov/pubmed/). S e e e e a d cr e ed a r -ac d e c ce (Tabe 1) e e c e a d cr e c a r a e DNA a (Lrr r B f, Sa Ra r, USA). T e e c ce "GAGAGSGAGAGS" a e c c e a c c e e c f c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c c f c 50 ,  $L^{-1}$  PBS (H7.4) a aff, f 60  $L^{-1}$ . At e (10 L) a d, ed 10 L 50 ,  $L^{-1}$  PBS (H7.4) a d a a eda aff, f 60  $L^{-1}$ . T e , a b d a e ed 0.1 ,  $L^{-1}$ , or e-HCL (H3.0).

 $D_f$  ec ELISA a  $\varphi f_f$  ed de  $\varphi$   $\mathbf{r}$  e e d, f, gad, da e (HRP)-cr SaedS a **a** , abb **S G** (ecr da **a** b d , Abca , Ca b **S** e, UK)...  $\mathbf{r} \cdot \mathbf{T} = \mathbf{r} \cdot \mathbf{t} \cdot \mathbf{b} \cdot \mathbf{d} \left( \mathbf{r} = \mathbf{a} \cdot \mathbf{b} \cdot \mathbf{d} \right) \mathbf{f} \cdot \mathbf{c} \cdot \mathbf{a} - \mathbf{c} \cdot \mathbf{b} \cdot \mathbf{d}$ rs a d, edr c ars b ff  $e^{1}$  (0.015 , L<sup>-1</sup> Na<sub>2</sub>CO<sub>3</sub>, 0.035  $L^{-1}$  NaHCO<sub>3</sub>) fr a a cr ce ( a r f 8, 4, 2, 1, **a** d 0.1  $\beta$  L<sup>-1</sup>. T e ecr da **a** b d **f** r c bars a di edr b crs ... r (PBS, 1 % BSA (Ss a, Ca f ( a, USA)) 1:800, 1:1600, 1:3200, 1:5000, a d 1:10, 000.  $\mathbf{I}$  d<sub>1</sub> ec ELISA a  $\mathbf{e} \mathbf{f}_1$  ed de  $\mathbf{e} \mathbf{r} \mathbf{e}$  e d. r trer a d b d ... h. Pretbr tr cars a d, edr' cars bffe, fra la ch ce, a $f = f = f = 1, 0.5, 0.25, a = 0.125 \ \mu = L^{-1}. T = f^{-1}$ a b d f, r c bars a d, ed r b, c r s ... i r i 1:500, 1:1000, 1:2000, 1:5000, a d 1:10,000. T e ecr da a b d f, r c bars a d, edr b, c rs ..., r<sup>1</sup> 1:5000 (ee "Te rs, f, de r da f ca, sed a je " , ec\_r ab ELISA  $\int ced_1 e$ ).

## Samples and optimization of extraction

E differ a cae, S ca, a ie (a de 2 S eac) e e bared f e Cree Te le Ide f car a d Cre a r Cre f CraS, M e . Te daed bac 400 BCE, 0 CE, 400 CE, a d 1000 CE, eac e a a ed b a er e a f a de 400 ea. f e e . Teci, d e s f e a je S beca ed b e e f differ tier e j -d er j ce, a d b e c j c a s e f s s j

T e a f c a  $\cdot$  a  $\cdot$  f  $\cdot$  a  $\cdot$  a

$$f_{111}$$
 ed b ce fs a r  $f_{1}$  5 r a 12,000g bar  
e gran  $f_{1}$  c ars.

#### Testing of model and artificially aged samples

T e a f c a sed a se e e a a e e a c ed. A f c a sed a se e a c  $(100 \ \mu L)$  e added c a ed e (G e e B - O e G bH, F c e a e, Gea ) e a a d a d r c b a ed er s a 4 C. A, d, e e a ed, a d r e e e e r ed a a rs. g = e, ced e e e f, ed ee e (2 r e = 0000015.4r r .102 .5(Ca b)5.6 Ca b .PBST 2.5(e)0(d)-1.(.) Cac rs 4.7000122( ) r (a b d d-202.30000305(c1)-256 a b d a a e f b b b c f b c f b c f b c f b c f c f b c f c f b c f c f b c f c f b c f c f b c f c f b c f c f b c f c f b c f c f b c f c f c f b c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c f c

## Assay performance

Af e rz a r f abb. a d f ca r f a e , a c r a a b d g ar f b r a bar ed. O eba a fab c r ea edf. a c ae g ca e e e r ce ed a f r e a b ec. a d e e c ed. e b a c rgc e [24], a f be a g a e ber ed. a facr e c e e r e g aed. cr f e e c f c f e r e a b d F e e a r f a f c a g edf be a i e (i, c r , c , a d , F s. 1) e e edf, a b d e ecf c a da r.

T de re e e e e e da -a b d d, r, e a d, r, f a a b d e e c a e e e, f, e d b r c ba r e e c da a b d r 3, ade d, r. E e ac e c da -a b d d, r, e bar ed OD a e e e e e d a r a -a b d d, r, e bar ed OD a e e e e e d a r a -a b d c r ce a r ( $F_{5}$ . 2). N dff e c e r OD e r e a be e df, e c r da -a b d d, r f 1:5000, b a s r f ca e e c a e a e d, r f 1:10,000. T r d ca e a c a b d a r b r d

ecrda a bd c e ecrda a bd a a a d, f 1:10,000. T e ef f e , d e , d a e  $f_f$  $ecr da - a b d d_{i}$   $r^{i} = \frac{1}{3} 1:5000; be c c r c e^{i}$ , a , r , e , a , b de c , dr , br d e, eac , e a d. e. c. . . f r. a. a. a affected. A a a b  $e \in \mathbf{c}$  a  $e \mathbf{f}_{I}$  ed de  $e \mathbf{r} e = e$ a\_-a bd d, r.E, eac , a\_-a bd d, lr, e baredOD a e lee, ledstar fbrcrce, a.r. (F3. 3). Ted, r. f 1:5000 a'a... e  $\int d d_1 = \int d d_1 = \int d f_1 = \int d d_1 = \int d$ ed c, r r OD, e', i e' a sar, b, e ed e, e, a a b d 'a a ad, r f 1:10,000, e ears a' e c'aedfbrc,d...bef.,brd..., a. a. bd c a a ad, r f 1:5000. I a beirs, e -, a and eerda - an bdd, r eeb e a 1.5000; a . e e a . b'd cr ce / a .r . , e . . . f  $\mathbf{r}$ ,  $\mathbf{a}$ ,  $\mathbf{a}$ ,  $\mathbf{a}$ ,  $\mathbf{a}$ ,  $\mathbf{b}$ ,  $\mathbf{e}^{\mathbf{f}}$ ,  $\mathbf{f}$ ,  $\mathbf{b}$ ,  $\mathbf{e}^{\mathbf{e}}$ ,  $\mathbf{r}$ .

T ac e e a a e de rar f. e e ar. be e OD e r e dfb r cr cr a r, eOD a e f. a dadfb r ... r a , ed s ar... e de a b a e df b r cr cr a r (Ps. 4). T e be r ea f. a b a e d d e e a r a:  $OD_{450r} = 1.82$  C - 2.42  $(r^2 = 0.961)$  (1)

e C ... e cr cr a r ff b r r r  $L^{-1}$ . T e deec r ... f e a a , e a eda e cr cr a r f e f b r S r S a OD a e a 450r ... e a 0.34 ( e a e S e f e OD a e a 450r f e ... a e b ff e ed a r e (PBS) ... e e ... a dad de a r ), a 32.8r  $L^{-1}$  [25].

T eff. dff chi fr a relers a fr d e e actri i r ada ed , er e actri fi e a re, cr. ders a releve ed de  $\mathbf{a}$  d e  $\mathbf{a}$  d r s  $\mathbf{a}$  c c r d s e r r, fr e a reli b de a e , a reed be e ed d a . afe



Fig. 1 Sa (e-h) A (e-h) A f ca (a-d) A f ca (a-d) A f ca (a-d) A (f ca (a-d) A (f) (a-h) (a-h) A (f) (a-h) (a-h) A (f) (a-h) (a-h) A (f) (a-h) A (f) (a-h) (a-h) (a-h) A (f) (a-h) (a-



fb, r e, ac, r, c a ca, e e, ff, b, r a d r c a be e a, a r fac ae, c ca, a ie a a, abe. A, fr 1 , L<sup>11</sup> cac c, de, 8 , L<sup>-1</sup> ae, a d2 , L<sup>-1</sup>e a, a a ead ber e ed r der a e, a d, ed, be eff c f, e acr fb, r f, f, e, e, cac r, r e acr b r f, e d be ec a ed f, e e, ac , b addr e ce e a r f c ar b ffe cr r f, f d cabrae a d, d b cabrae. T e ed c f, ed c ded cac cabrae a d cac b cabrae, c c d be e a aed f, e e ar f b, r , r b ce f a a r f c ar e d ad ad a set r e a a e, ff b, r c d be ed ced b b r f, da ce f f a r ; e e a a r & a ers, ed c ., f, e a iee a , i, r i ee , ac c id bes, ea, di ied b addrs e ce, e a , r ., f c ars b ffe.

Tec,, a a ce, f. e e, c a ed a f ca, s ed f be a , e a bar ed (ESM Fs. S2a). B c ars e c, a a ce, f. a , e e, e cr, e, a e r a c c, d be ade, f e e e a , e cr ar ed f b, r, a s r eeded be e f ed b ea r g e OD a e C, a a ce a r b e ed f e e, c a ed a f ca-s r , r d cars a e ecf c br d s be er e a b d a d f b, r e ed r e ea ed a e e r e f e r a a ef a f ca, s ed f be a e e d ffer. F, , ,

Fig. 3 ELISA c, e, bar ed f, fb, r a dffee , a a b d d, r a da ecr da - a b d d, r f 1:5000 S a da d, r f 1:5000 S a da d, r f e e e e e a ed b , S, e e d, r f 8 g d edf b r r 1 L cabr a eb cabr a e b ffe a H 9.6. T e a a b d a d, edr b cr 5 b ffe 1:500, 1:1000, 1:2000, 1:5000, a d 1:10,000





Fig. 4 ELISA ca bair c, e, bared f, fb, r a. e, ed a. a d. ecr da. -a. b d d, .r., eac. f 1:5000, e, e, ed a e, ear. be er OD a 450r a d. e dr a., Sa. f fb:r cr cr a.r. (C). Sa dad., .r., f. e, ere e ce , .er. e e, e a ed b , S, e. e d, .r. f 1 S, d ed fb, r r 1 L ca brae-b ca brae b ffe a H9.6

e OD (450r) a 0.8. T a S e **a** eOD **f** 0.2 bared f<sub>1</sub> e, e, e fbe, Tere, e, e, er, e, f, geal r'd ca ed e e ca, e ... ecf c ... f ere a b.d.<sup>1</sup>. a bere ab, ed. a , df.ca,r, ffb, r d<sub>1</sub>rs srs ca be lec , e, beca e a  $fac_{j}$ ,  $r \in dr$ , g = g, g = g,  $d_{i}$ ,  $ea_{j}$ ,  $ad_{j} = g$ , f = gSo  $c_{c}$  ,  $r_{c}$  , affect  $f_{c}$  ,  $c_{c}$  ,  $P_{c}$  ,  $d_{c}$  ,  $f_{c}$  , e' ealed a qea Steff e e de car a e a , . Me f. da r cr d r , e , rs r a dec ea er f b r i i ec $a = e^{3}$  a d f b, r c, a, le d, r e a, r [3].  $H' e e, e_l e_l, r E = 5_l e e = a = e_l e_l e_l$ fsed, a, raese, cabe a f thre, acedt, te, .T. rdcaed a e e e cé "GAGAGSGAGAGS" r GX d a**r**, f e ar ed r ac ar d  $\beta$ -, ee  $\varphi_{-}$ ,  $a_{1}r e_{f} \in r$ а





Fig. 6 ELISA, ca de e bar edf, a ce , a e ea ed a or a a b d fb r Re f, fdffer se a d  $c_{f}$  e r dr SDae e edf, e e edf r, c r r ex-a

r, be, ç, j, da Sieder f.e., ffe, f, , e ç e Sirs, ç r d., r...

O e a, , e e e , , e e a , a , e , , e d e , d , f r e a a , r a d a a , e e , cce, f , r S e e a S a , h b d , a , b , e , e a d e e c e. W a , e, da S e ca , ed b , S , S e , d , a d e a adr effec, r , de f ca , r , r S , e , d.

#### Application of the new method to archaeological samples

 $\mathbf{Q}$  ce le da d  $\mathbf{z}$  d  $\mathbf{z}$  ed, le de e ed  $\mathbf{z}$  ced  $\mathbf{z}$ e e ed de fafe nga fiela i a le rea edf. Creence's b'(FS. 1). I Cra, r, edbie e er f. a, a be e ed. a e  $e b_f$  edr. f d c. f d be f eb f r a., [26]. A ! e a. ed, b ed., 1. d d. e e da & ed b ea, f deca. T e e, ed, a fac, a e , ecc., bec r'ea. edf, dffec.acc.Creeb, a le, ef c a daebac edra e fe Wars Sae Pe, d (475 BCE, 221 BCE), We er Ha (202 BCE ), 9 CE), Ea er Jr (317 ), 420 CE), a d e N<sub>1</sub> er SrS (960,  $112^{\frac{1}{7}}$  CE). A<sub>1</sub> de a<sub>1</sub> ed a<sub>1</sub> e e etsrzeda a feradorabia a re e e de fedbe facrs fer f, deea fra fa le, c a e e ed rs ELISA. Tace, ffb, r ¢ e de ec ed  $\mathbf{f}_{1}$ , e, ed, a , e,  $\mathbf{f}_{1}$ , c d a a d c ,  $\mathbf{f}_{2}$ la **a** ce  $\mathbf{f}$  e  $\mathbf{c}_{II}$  e  $\mathbf{r}$  dr **s** e, a' b e ed (ESM P3. S2b). Te lie er e ea ed a der er e maler er edr F3.6.C a r' t ea e se OD a e t e PBS cr  $f_{f,h}(0,2)$  a  $f_{f}$  ef  $f_{f}$  a  $f_{f}$  ea 1.0) a  $f_{f}$ 'ce., ef e, eccelffb, rrlee, a, e. N Sr f ca dffe c de a f r dbe ec eOD a e f. e f<sub>11</sub> ea a le e ears a e e r e f e a b d