Stemucronatoside L, a Pregnane Glycoside from the Roots of Stephanotis mucronata, Inhibits Th1/Th2 Immune Responses in vitro Formula: $C_{58}H_{91}NO_{23}$, M_r : 1192.5914 . 1. Chemical structure of stemucronatoside $L\left(\right)$ T b 1. Effects of Stemucronatoside L () on Splenocytes CD4 /CD8 Subsets. 0 10 μ / C A (3 μ /) 590T % 42912195.0899486.4818T ()T / 31T 7.9 06664. 43257.222483.7605T (/)T / 51T .283.95939.24.9969(590T % 425750254.8325) 2. Effect of SML on Cytokine Productions from ConA-Stimulated Splenocytes. The contract of th $(n \quad 3).$ | ,• | | C | | | | | | |-------------|-------------------|------------------|-------------------------|-----------------------|--------------------|--|--| | | | -2 | -4 | -10 | -γ | | | | C . | | 20 ± 10 | 2.33 ± 0.33 | 20±1 | 936 ± 197 | | | | C A | | 636 ± 15 | 9.13 ± 0.11 | 204 ± 18 | 3366 ± 265 | | | | C A± | $(0.08 \mu /)$ | 495 ± 58) | 6.35 ± 0.57^{b} | 165 ± 5) | 1931 ± 216^{b} | | | | C A± | (0.4 µ /) | 488 ± 51^{6} | $5.92 \pm 0.66^{\circ}$ | 146 ± 15) | 1266 ± 127) | | | | C A± | $(2.0 \mu /)$ | 452 ± 41^{6} | $4.83 \pm 0.88^{\circ}$ | 135 ± 8^{b} | 1241 ± 91) | | | | C $A \pm$ | $(10 \mu /)$ | 301 ± 56) | 2.60 ± 0.28 | $76 \pm 15^{\circ}$) | 1011 ± 63) | | | | | b С | A ** |) P - | <0.05, b) P < 0.01, |) P < 0.001. | | | T b 3. The mRNA Expression Level of Cytokines and Transcription Factors in Mice Splenocytes Treated with Stemucronatoside L () and Con A. | | C | μ /. | <u>ι</u> <i>l</i> | | | | | | |--------------------------------------|-----------------|-------------------|---------------------|-------------------|---------------------|---------------------|--|--| | | 0 | 0.016 | 0.08 | 0.4 | 2 | 10 | | | | -2 | 0.49 ± 0.01 | 0.42 ± 0.02) | 0.41 ± 0.02^{b} | 0.30 ± 0.03) | 0.28 ± 0.04 | 0.09 ± 0.01 | | | | γ | 0.45 ± 0.03 | 0.21 ± 0.03) | 0.19 ± 0.03 | 0.18 ± 0.03) | 0.15 ± 0.03 | 0.09 ± 0.02 | | | | T- ^b ′ | 0.39 ± 0.03 | 0.33 ± 0.01) | 0.33 ± 0.01) | 0.33 ± 0.01) | 0.27 ± 0.02^{6} | 0.22 ± 0.02 | | | | -4 | 0.52 ± 0.04 | 0.42 ± 0.04) | 0.41 ± 0.01) | 0.30 ± 0.01) | 0.28 ± 0.01 | 0.05 ± 0.01 | | | | -10 | 0.39 ± 0.02 | 0.34 ± 0.02) | 0.26 ± 0.01) | 0.22 ± 0.01) | 0.21 ± 0.01 | 0.13 ± 0.01 | | | | AT A-3 | 0.51 ± 0.07 | 0.38 ± 0.03) | 0.37 ± 0.01) | 0.37 ± 0.05) | 0.37 ± 0.02) | 0.27 ± 0.01^{6} | | | | P < 0.05, $P > 0.01$, $P < 0.001$. | | | | | | | | | ## **Experimental Part** 24 , Kobe J. Med. Sci. **2002**, 48, 167.