Open Access

Asian-Australas J Anim Sci Vol. 33, No. 7:1156-1166 July 2020 https://doi.org/10.5713/ajas.19.0274 pISSN 1011-2367 eISSN 1976-5517

Effects of compound organic acid calcium on growth performance, hepatic antioxidation and intestinal barrier of male broilers under heat stress

Junna He¹, Lianxiang Ma¹, Jialing Qiu¹, Xintao Lu¹, Chuanchuan Hou¹, Bing Liu^{1,2}, and Dongyou Yu^{1,*}

- * Corresponding Author: Dongyou Yu
 Tel: +86-571-88982107, Fax: +86-571-88982107,
 E-mail: dyyu@zju.edu.cn
- ¹ College of Animal Science, Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
- ² State Key Laboratory of Food Science and Technology, and Synergetic Innovation Center of Food Safety and Nutrition of Jiangnan University, Wuxi, Jiangsu 214122, China

ORCID

Junna He

https://orcid.org/0000-0003-1805-2434 Lianxiang Ma

https://orcid.org/0000-0001-7554-9047 Jialing Qiu

https://orcid.org/0000-0002-3440-7488 Xintao Lu

https://orcid.org/0000-0003-0051-8929 Chuanchuan Hou

https://orcid.org/0000-0001-6731-5611 Bing Liu

https://orcid.org/0000-0003-0451-7341 Dongyou Yu

https://orcid.org/0000-0002-8350-3126

Submitted Apr 3, 2019; Revised Jun 11, 2019; Accepted Aug 11, 2019

O , : (∑). -500 50 .	6 .
0.4% 0. % , 0. %	0.4%	, 1 42 0.0 3)	0.4% 0. % (0.05).
42 -15,	(0.05),	, -1	2 - 2 (-2) (0.05). ,
C,:	,		0.4%.
K	В		

IN OD C ION

1, 2,
3,
4.
30
, B

, , ,B	<u>3</u> . ,	+ . B) 15 . B	55%	(32.⊠ 65% (2)
<u>_6</u> , () <u>_</u> ₹	,	21 4	2, 12	- * * * * * ,	, · · · · · · · · · · · · · · · · · · ·
_,		٠	,	<u>14</u> .	-
, 11 . ,	10,	Ц.	0	-	-
<u>12</u> .	-	G .,	0 ·00 21 42	l	
MA E IAL AND ME HOI	D	, (/) .	(),
A , . , . , . , . , . , . ,		<u>L</u> , ,		, . ,,	
	· -	15	1· , 4 .		2,500 /
(,). -500 45.60 0.5	, ((), (-),	-),	(-)
50 .	, 6 ,	NA	(,).	В
	,	- (,, 2(),,		, , , , , , 	
0.4% 0. % , B (,), , ,	· , , - , , , , , , , , , , , , , , , ,			O _i	
26.45%. (1 21 22 42)	- 1 <u>3</u>	(,	,). 1 (,).	
0.2 0.26 /),	1. (50 / ,	() _₹500	B (,) B

```
5,
30
                  40
                     60,
                                                                             20.0 (
                                                                                         <u>16</u> .
                              2
                         3.
                                                                                         0.05
                                                                        0.05
                                                                              0.10.
      <u>15</u>.
                                                   E L
                                                  G_{\cdot, \cdot} ... , ..., ...
2003 (
                                                                                   4. 1 21 ,
                                                                        0. %
                                                           0.4%
                                                 _22%
                                                          6.13% ( 0.05)
                                                            4.05% ( 0.05)
                                                    3<u>.4</u>%
                                                                             0.4% 0. %
                                                           22 42 ,
                                                                5.3 ( )-4 ( )61 ( )-4. ( ) 6 3
```

AJAS

Table 3. Gene names and primer sequences

Gene	Primer sequence 5'-3'
MUC-2	F: GCCTGCCCAGGAAATCAAG
	R: CGACAAGTTTGCTGGCACAT
OcIn	F: GAGCCCAGACTACCAAAGCAA
	R: GCTTGATGTGGAAGAGCTTGTTG
Cldn1	F: TGGCCACGTCATGGTATGG
	R: AACGGGTGTGAAAGGGTCATAG
Cldn3	F: AATGCGCCATCTCTGCAAAC
	R: GTTTCTCCGCCAGACTCTCC
TLR2	F: TGTTCCTGTTCATCCTCATCCT
	R: AGTTGGAGTCGTTCTCACTGT
-actin	F: TATGTGCAAGGCCGGTTTC
	R: TGTCTTTCTGGCCCATACCAA
TLR4	F: GAATGACACGGACACTCTT
	R: ACATAGGAACCTCTGACAAC
TLR15	F: CTTGTCGTTCTGGTGCTAA
	R: ATCGTGCTCGCTGTATGA
IL-1	F: CGACATCAACCAGAAGTGCTT
	R: GTCCAGGCGGTAGAAGATGA
iNOS	F: TACTCTTGGCGTCATTACTC
	R: GCATAGATCACAGTCACCTT
TGF- 2	F: TCTCGGAGCAGCGGATAGA
	R: AATCCAAGGTTCCTGTCTCTGT

F, forward; R, reverse; *MUC-2*, mucin 2; *OcIn*, occluding; *Cldn*, claudin; *TLR*, toll-like receptor; *IL*, interleukin; *iNOS*, inducible nitric oxide synthase; *TGF-2*, transforming growth factor-beta 2.

Table 4. Effects of dietary compound organic acid calcium on growth performance of broilers

14	21 days of age ¹⁾			CEN4	
Items	Control	0.4% COAC	0.8% COAC	SEM	p-value
Body weight (g)					
1 day of age	45.80	45.19	45.40	0.35	0.52
21 days of age	563.45 ^a	600.15 ^b	594.71 ^b	9.91	0.04
42 days of age	1,498.89 ^a	1,608.86 ^b	1,603.45 ^b	35.31	0.01
1 to 21 days of age					
ADFI (g)	42.68	44.02	43.43	0.74	0.50
ADG (g)	24.65 ^a	26.43 ^b	26.16 ^b	0.48	0.04
F/G	1.73 ^b	1.67 ^a	1.66 ^b	0.01	0.01
22 to 42 days of age					
ADFI (g)	93.43	95.59	95.98	1.62	0.55
ADG (g)	44.54 ^a	48.03 ^b	48.04 ^b	1.51	0.02
F/G	2.10 ^b	1.99 ^a	2.00^{a}	0.04	0.01
1 to 42 days of age					
ADFI (g)	67.99	69.77	69.71	0.95	0.37
ADG (g)	34.60 ^a	37.23 ^b	37.10 ^b	0.85	0.01
F/G	1.97 ^b	1.87 ^a	1.88ª	0.03	0.02

Values reported as means (n = 6).

COAC, compound organic acid calcium; SEM, standard error of means for 6 broilers each; ADFI, the average daily feed intake; ADG, the average daily gain; F/G, the ratio of feed gain.

¹⁾ Control = basal diet without any feed additive; 0.4% COAC = basal diet + 0.4% compound organic acid calcium; 0.8% COAC = basal diet + 0.8% compound organic acid calcium.

 $^{^{}a,b}$ Means in the same row with different superscripts differ statistically (p < 0.05).

```
0. %
                                                                                        (0.05)
( 0.05) 1
                                                                                   -2,
                                                                                         -4,
                                                                      ( 0.05).
                                                   -1
                                          C-
                                                 DI C
                                                           ION
  , 1,
            3,
                                           3
       2.
            21,
                         (0.05)
                                         0.4%
                                         0.4%
           0. %
                                3
          C-2
                     (0.05).
                               42, 0.4%
              (0.05)
      1
                   0. %
     3
    ( ),
1 ( -1 )
  , 21, 0.4%
                                        0.05)
   -2
(0.05)
                                   0.4%
                         42,
15 ( 0.05),
                                    ( 0.05).
                    21,
                                   0.4%
                   -15
                               ( 0.05).
                                          42,
```

AJAS

Figure 1. Effects of compound organic acid calcium on MUC-2, ocln, cldn1, cldn3 and TGF- 2 mRNA expression in jejunum of broilers. At 21 and 42 days of age, the expression of MUC-2 (A), ocln (B), cldn1 (C), cldn3 (D) and TGF- 2 (E) were measured by real-time polymerase chain reaction. MUC-2, mucin 2; Ocln, occluding; Cldn, claudin; TGF- 2, transforming growth factor-beta 2. Different letters (a-c) denote a statistical difference (p<0.05).

Figure 2. Effects of compound organic acid calcium on ocln, cldn1, cldn3 and TGF- 2 mRNA expression in ileum of broilers. At 21 and 42 days of age, the expression of ocln (A), cldn1 (B), cldn3 (C) and TGF- 2 (D) were measured by real-time polymerase chain reaction. Ocln, occluding: Cldn, claudin; TGF- 2, transforming growth factor-beta 2. Different letters (a-c) denote a statistical difference (p<0.05).

Figure 3. Effects of compound organic acid calcium on TLR, iNOS and IL-1 mRNA expression in jejunum of broilers. At 21 and 42 days of age, the expression of TLR-2 (A), TLR-4 (B), TLR-15 (C), iNOS (D) and IL-1 (E) were measured by real-time polymerase chain reaction. TLR, toll-like receptor; iNOS, inducible nitric oxide synthase; IL-1, interleukin 1. Different letters (a, b) denote a statistical difference (p<0.05).

Figure 4. Effects of compound organic acid calcium on TLR, iNOS, and IL-1 mRNA expression in ileum of broilers. At 21 and 42 days of age, the expression of TLR-2 (A), TLR-4 (B), TLR-15 (C), iNOS (D), and IL-1 (E) were measured by real-time polymerase chain reaction. TLR, toll-like receptor; iNOS, inducible nitric oxide synthase; IL, interleukin. Different letters (a, b) denote a statistical difference (p<0.05).

. ,	10.100♥ 004 4-015-1103-
,	· , , , , , , , , , , , , , , , , , , ,
CONFLIC OF IN E E	·// . /10.101型 1型51型3111型00243 . , , B , .
ACKNO LEDGEMEN	2010 16: 41-6.
	,
EFE ENCE	, 201 <u>0</u> ≅· <u>4</u> ≅ 4 5. ·// . /10.4061/2010/4 [®] 4 5
1 , , , , , , , , , , , , , , , , , ,	12. , - , , B , - ,
2016 60·11 3- 2. ·// . /10.100♥ 004 4-015-1112- 2. , , , , , , ,	. 2013 12·_3 [∞] . ·// . /10.40 1/ .2013. 3 [∞] . 13.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 43·101. ·// . /10.10 3/ /3.1.101 14.B , , , ,
·// . /10.252 2013-6445 4. , , , , , , , , , B -	. 2013 2·663- 0. ·// . /10.33 2/ .2012-02 13 15. , , ,
. 201 ^M 64 ^M - 5. ·// . /10.33 2/ / 344 5. , - , - , - , , .	201 · 2 2 ·// . /10.100 12602-01 252-3 16. B B 1 55 11·1-42. ·// / /30014 12602 1 , , , , , .
- , /	200 [⊠] 44·3 - 5. ·// . /10.2141/ .44.3 1 . , , , .
6. , , , , B	. 2015_4 635 1 . , , , , .
. 2012 1:5 5- 2. ·// . /10.33 2/ .2010-012 3 , , , ,	, . 2006 5·14 -55. ·// . /10.
	,

2016 60·10 -110. ·// . / ,

. B

AJAS

2010 0·5 63. ·// . /10.4141/ 0 04 21. , , , , , .	30. , , , .
2015 31·163 22. , - , , , ,	2005 5 ·43 <u>-4</u> 2. ·// . /10.10 0/ <u>1</u> 24503 050035 34 31. , , .
, , , , , , , , , , , , , , , , , , ,	. B 2004 16·140-5. ·// . /10.1016/2004.01.005 32. , B , .
. 1 6 ·353-66. 24. , - , .	2014 12 [№] 3401-13. ·// . /10.1242/ .14502 33. ,
. B 1 32·5 5-603. ·// . /10.1016/ 000 - 120()000 5-2 25. , , , , , B	2014 14·141-53. ·// . /10.103 / 360 34. , , , , B
. B 2003 44· 545-50. ·// . /10.10 0/000 166031000161 334 26. , , , ,	, , , , , 2012 1·5 ¹ 5- 2. ·// . /10.33 2/ .2010-012 3 35. , , B, . B -
, . (), ()	C - B 201 · . ·// . /10.
(). B B 2015 6·13 -52. ·/ /10.4236/ .2015.63014 2 [№] . , B, , , , ,	11 6/ 40104-01 2020-2 36. , , , B , ,
200 3·1≅. 2	200 120·2462 ·// . /10.1161/ .10 . 51 1 3 ^M . , - , - , - , , , ,
2. , , , , ,	. 2014 13-
200_₹5- 3. ·// . /10 <u>.2</u> ₹54/ 200_₹ 01 <u>00</u> ₹5	602-10. ·// . /10.3 23/ .2014.602.610