


for economic fraud (Hennessy et al. 2008). For these reasons,
the identification of botanical origin for honey products is
important not only because of specific legislation but also
because of market demands including those of food proces-
sors, retailers, enforcement agencies, and consumers (Ulloa
et al. 2013). Besides the identification of botanical origin,
several quality features of honey have to be determined, which
include water content, enzyme activities of invertase and α-
amylase, hydroxymethylfurfural (HMF), electrical conductiv-
ity, and sugar composition (mainly glucose, fructose, maltose,
and sucrose). These quality features vary significantly among
different honey products (Oddo et al. 2004). As with the
identification of botanical origin, the quality inspection of
honey is also of interest to regulatory authorities, food proces-
sors, retailers, and consumer groups (Wang et al. 2010).

Melissopalynological analysis is the reference method for
the identification of the botanical origin of honey. It is mainly
based on the identification and quantification of pollen grains
in the honey sediment. However, as this involves a laborious
counting procedure requiring specialized knowledge and ex-
pertise in the interpretation of results, this method is rather
difficult and very time-consuming (Ulloa et al. 2013). Ana-
lytical and quantitative methods such as high-performance
liquid chromatography (HPLC) and high-performance an-
ion-exchange chromatography are also routinely performed
in quality determination of honey (Wang et al. 2010;
Cozzolino et al. 2011). These methods are laborious and
time-consuming, require considerable analytical skills, in-
volve a lot of tedious and complex pretreatment of samples,
and use many hazardous organic reagents that require high
costs for storage and disposal. Moreover, each quality feature
of interest needs a specific analytical method, and only a
limited number of samples can be analyzed. Therefore, there
is a trend to develop rapid, simple, efficient, non-invasive, and
accurate analysis methods for the quality inspection of honey.

Aroma is an important parameter among the sensory prop-
erties of foods (Falasconi et al. 2012). In the present study, the
acquisition and analysis of volatile compounds of honey were
conducted using an electronic nose (e-nose) for the identifi-
cation of botanical origin and determination of quality com-
ponents of honey. E-nose is an instrument with an array of
sensors to mimic the sense of smell, typically used to detect
and distinguish odors precisely in complex samples and at low
cost (Peris and Escuder-Gilabert 2009). As an objective, au-
tomated, and non-destructive technique to characterize food
flavors, the e-nose has the advantage of high sensitivity and
correlation with data from human sensory panels, ease of
operation, and cost-effectiveness, requiring only a short time
for analysis (Peris and Escuder-Gilabert 2009). However, the
e-nose has not been considered for the quality measurement of
honey using quantitative models. Much previous research
established only qualitative discrimination models for honey
classification using an e-nose (Ampuero et al. 2004; Benedetti

et al. 2004; Kenjerić et al. 2009; Hong et al. 2011). There are
several reports considering establishment of quantitative re-
gressionmodels for the prediction of quality features of honey.
However, no reports have selected important sensors of the e-
nose that are important to predict specific quality features of
honey. The selection of important sensors is the key step for
optimizing the sensor array of an e-nose, so that simple, fast,
and low-cost e-nose systems with only the selected sensors
can be designed.

Given the limited information on the usefulness of the e-
nose for quality determination of honey, the main aim of this
study was to investigate the feasibility of an e-nose for iden-
tifying the botanical origin and determining the main quality
components of honey such as glucose and fructose and also
other important components such as hydroxymethylfurfural
(HMF), amylase activity (AA), and acidity. The specific ob-
jectives of the current study were to (1) acquire e-nose profiles
of honey products from 14 botanical origins, (2) build origin
discrimination models using pattern recognition and qualita-
tive discrimination, (3) measure the reference values of inves-
tigated components of honey using traditional standard
methods, (4) use the reference values of samples and their e-
nose fingerprints to establish quantitative prediction models,
and (5) identify the important sensors that were mostly corre-
lated to the quality determination.

Materials and Methods

Sample Preparation and E-Nose System

Honey samples were purchased from local supermarkets in
Hangzhou, China. The details of the geographic and botanical
origins of these samples are shown in Table 1. There were two
geographic origins and 14 botanical origins for these samples.
Each botanical origin had six samples, resulting in 84 samples
(six samples per origin×14 origins). From these, 56 samples
(four samples from each botanical origin) were selected for the
model calibration, and the remaining 28 samples (two samples
from each botanical origin) were used for validation. Two
grams of sample was added to a 10-ml crimp-top vial with a
diameter of 20 mm, sealed with an aluminum gasket contain-
ing a PTFE/silica gel septum, and then stored in a 0 °C icebox
for further e-nose measurement.

The e-nose system used for this study was a Fox 4000
(ALPHA MOS, Toulouse, France) with three metal oxide
sensor chambers equipped with 18 sensors. There are two
types of sensors currently used: P & T sensors implemented
in chambers A and B and LY2 sensors used in chamber CL.
Their specific names are LY2/LG, LY2/G, LY2/AA, LY2/GH,
LY2/gCTl, LY2/gCT, T30/1, P10/1, P10/2, P40/1, T70/2, PA/
2, P30/1, P40/2, P30/2, T40/2, T40/1, and TA/2. P& Tsensors
are metal oxide sensors based on tin dioxide (SnO2) (n-type
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semiconductor). The difference resides in the geometry of the
sensors. Type T has the sensitive layer placed on a tube of
aluminum, while the sensitive layer of type P is placed on a
plain substrate. The LY2 sensors are metal oxide sensors
based on chromium titanium oxide (Cr2−xTixO3+y) and on
tungsten oxide (WO3). In the process of e-nose signal mea-
surement, vials were heated at 40 °C for 18 min in a dry bath
heater. Two-milliliter headspace gas in the vial was extracted
by a syringe and injected into the Fox system. The headspace
gas was pumped into the sensor chamber with a constant rate
of 150ml min−1. Themeasurement phase lasted 120 s for each
sample, and the clean phase was 240 s. The maximum or
minimum response values of sensors in the e-nose were used



Chromatographic conditions are follows: The binary solvent
system used was methanol/water (77/23, v/v), the elution of
binary solvent was conducted in isocratic fashion. The flow
rate was kept at 1.0 ml min−1. The temperature of the column
was 30 °C. The injection volume was 10 μl. The content of
HMF was calculated by the following formula:

X ¼ c � V

m
� 1000

1000
ð3Þ

where X is the content of HMF (mg/g), c is the concentra-
tion of HMF (mg/ml) obtained from the established standard
curve, V is sample volume (ml), and m is sample weight (g).

AAwas determined by spectrophotometric method accord-
ing to GB/T-18932.16-2003 2003. A total of 5 g sample was
added to a mixture of 15 ml water and 2.5-ml acetate buffer.
NaCl (1.5 ml) aqueous solution was added to the mixture,
made to 25mlwith water in a volumetric flask, and used as the
sample solution. Ten milliliters of sample solution, 5 ml of
starch solution, and 10-ml iodine solution were kept in a water
bath at 40 °C for 15 min, respectively. Then, the sample
solution was incubated with the starch solution for 5 min,
1 ml of the mixture was added to 10-ml iodine solution, taking
water as the control, and the absorbance was measured at
660 nm. The results were expressed as ml(g h)−1. The diastase
value was calculated with the following formula:

X ¼ 300

t
ð4Þ

where X is the diastase value and t is the corresponding
time.

Multivariate Analysis

One of the advantages in developing an e-nose is that the
analytical process does not require separating samples into
individual chemicals, but detects and analyzes the volatile
fraction of the sample as a whole. The signal produced by

the e-nose results in a matrix of semi-independent variables
(the sensor array output) and a set of dependent variables
(classes or quality features) (Scott et al. 2006). The matrix
contains rich information of volatile fraction in the sample.
However, it is difficult to directly tell which sensors are
important for the analysis. As with the human olfactory sys-
tem, sensors of the e-nose are not designed to detect a partic-
ular volatile, but learn new patterns and associate them with
new odors via training and data storage functions as humans
do (Ampuero and Bosset 2003). Therefore, the massive quan-
tity of the e-nose matrix needs multivariate analysis to appro-
priately extract meaningful information in an efficient way to
establish qualitative discrimination and quantitative prediction
models. Multivariate analysis for the e-nose is similar to the
process of pattern learning in humans. In order to evaluate if
any single sensor could be used to determine any component
of honey, the correlation coefficients were calculated between
the response of each sensor and the reference values of five
quality components.

Pattern Recognition and Origin Discrimination

Two classic pattern recognition techniques, namely, principal
component analysis (PCA) and discriminant factor analysis
(DFA), were employed to generate scatter plots in two dimen-
sions to understand the cluster of samples. PCA is the most
frequently used unsupervised technique that decomposes the
data matrix into several principal components (PCs) to char-
acterize the most important directions of variability in the
high-dimensional data space (Wu and Sun 2013a). DFA is
another classic pattern recognition tool in which the decision
boundary between different groups is calculated
(Papadopoulou et al. 2012). In DFA calculation, the contribu-
tion of data is maximized by the linear combinations, resulting
in generating the largest difference between predetermined
groups and small variance within the individual group
(Ampuero and Bosset 2003; Papadopoulou et al. 2012). The
difference between PCA and DFA is that the PCA calculation
does not consider the relationship of the data to the group
numbers, while DFA calculation includes the group

Table 2 Statistics of five main quality components of honey samples measured by reference methods

Statistics Calibration set (%) Validation set (%)

Glucose Fructose HMF AA Acidity Glucose Fructose HMF AA Acidity

Maximum 38.93 45.23 135.49 8.20 20.49 38.63 45.76 139.80 8.28 20.52

Minimum 24.89 33.61 2.88 2.69 9.47 25.83 33.72 2.91 2.65 9.58

Mean 32.35 39.10 25.95 5.38 14.22 32.26 38.80 26.70 5.35 14.18

SD 4.06 2.97 35.56 1.47 3.32 3.92 3.13 37.60 1.47 3.32

Range 14.04 11.62 132.61 5.51 11.02 12.80 12.04 136.89 5.63 10.93

HMF hydroxymethylfurfural, AA amylase activity, SD standard deviation
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information (predetermined groups). Therefore, PCA is a non-
supervised method with no information on the groups of
samples but only the variance of the dataset, and DFA is a
supervised method that is based on a priori data classification.

The least squares support vector machines (LS-SVMs) are
employed to establish discrimination models for the identifi-
cation of honey samples from 14 botanical origins and from
two geographical origins. As an optimized version of the
SVM, LS-SVMs employ non-linear map function and maps
the input features to a high-dimensional space, thus changing
the optimal problem into an equality constraint condition (Wu
and Sun 2013b). Instead of solving a convex quadratic pro-
gramming (QP) problem as in classical SVM, LS-SVMs find
the solution by solving a set of linear equations. The optimal
parameters of γ and σ2 were found using the grid-search
algorithm. The number of support vectors in the LS-SVM
model is equal to the number of training data (Iplikci 2006;
Abe 2007). The details of LS-SVMs are described by Wu
et al. (2008b). In addition, for the discriminant analysis of
botanical origins, the samples belonging to the same botanical
origin were assigned an arbitrary number as their reference
botanical origin value. This assignment was carried out ac-
cording to the first column of Table 1. In order to solve
multiclass categorization problems, a set of L binary classifiers
was used to encode a multiclass task withM varieties (Allwein
et al. 2001). The minimum output coding was used to obtain
the minimal L (Wu et al. 2008a; Chen et al. 2013). Specifi-
cally, 14 origins (M) were encoded in the codebook using the
minimum output coding, resulting in 14 combinations of
binary numbers (−1 and +1) in L. Table 1 represents the
encoded binary matrix, where the columns represent the re-
sults of the binary classifiers (−1 and +1) and the rows indicate
the different botanical origins. The LS-SVM discrimination
was carried out by establishing binary classifiers in four
dimensions separately. The classified results of the four binary
classifiers were then decoded by the codebook into the arbi-
trary numbers of botanical origins, which were evaluated
whether they were classified correctly or not.

Quantitative Prediction of Quality Components

Quantitative prediction was implemented by building calibra-
tion models to predict five quality components of honey using
their corresponding e-nose data. Partial least squares regres-
sion (PLSR) was carried out to perform linear calibration
between calibration sample matrix (C) and the values of one
of the quality indices (Y). As a bilinear modeling technique,
PLSR extracts a set of orthogonal factors called latent vari-
ables (LVs) and explores the optimal function by minimizing
the error of sum squares (Wu et al.



coefficients of the variable. A threshold of stability is then
used to eliminate uninformative variables. The variables with
absolute stability values less than the threshold are considered
as uninformative variables and should be removed. The de-
termination of the threshold is based on an artificial random
variable matrix as a reference. The details of UVE calculation
can be found in the literature (Wu et al. 2009). SPA is a
variable selection algorithm designed to select variables with
minimal redundancy (Araujo et al. 2001). In SPA calculation,
a sequence of projection operations is carried out in the
columns of the variable matrix (rows represent samples),
resulting in candidate subsets of variables. These are then
evaluated according to the prediction performances of their
calibrated models established based on multiple linear regres-
sion (MLR). Details of SPA description are described by Wu
et al. (2012b). CARS is a novel variable selection algorithm
proposed by Li et al. (2009). CARS uses the absolute values of
regression coefficients of a PLSR model as an index for
evaluating the importance of each wavelength. Variables with
large absolute coefficients have more probability to be select-
ed. In this study, the processes of UVE, SPA, and CARS were
performed with the aid of Matlab 2011a software (The
Mathworks, Inc., Natick, MA, USA).

Model Evaluation

For the discrimination of geographical/botanical origins, the
performance was evaluated by the overall accuracy and spe-
cific accuracy in both calibration and validation processes.
The equations for overall accuracy and specific accuracy are
shown as follows:

OA ¼ CC

TS
ð5Þ

SA ¼ CCi

TAi
ð6Þ

where OA is the overall accuracy, SA is the specific accu-
racy, CC is the number of correctly classified samples of all
origins, TS is the total number of samples of all origins, CCi is
the number of correctly classified samples of botanical origin i
(i=1 to 14), and TSi is the total number of samples belonging
to botanical origin i (i=1 to 14).

For the quantitative prediction of quality components, the
predictive ability of the models was evaluated according to
some statistic parameters, such as correlation coefficient of
calibration (rC), coefficient of determination of calibration
(RC

2



quality components of honey are shown in Fig. 1c. The
highest absolute values of correlation coefficients were only
0.529, 0.303, 0.427, 0.637, and 0.357 for glucose, fructose,
HMF, AA, and acidity, respectively, showing that no single
sensor could be used to predict any of the five quality com-
ponents accurately. Therefore, the combination of several
sensors was considered for the quality prediction, which was
achieved through multivariate analysis.

Identification of Geographical/Botanical Origin

PCA and DFAwere used to check the capability of the e-nose
in assigning honey samples to a specific botanical origin. The
scores of the first two PCs or discriminant functions (DFs)
were displayed in two two-dimensional views (Fig. 2), where
similar samples were located close to each other and the
differences between origins could be observed. The total
explained variance rates (TEV, %) were 99.01 and 96.99 %
for the first two PCs and the first two DFs, respectively, which
shows that most of the information from e-nose data was
included in the first two PCs/DFs. In Fig. 2a, sample points
were generally clustered into two groups based on their first

Fig. 1 Polar plots of the fingerprints (the maximum or minimum re-
sponse values) of typical honey samples from 14 botanical origins (a) or
two geographical origins (b), and the correlation coefficients between the
response of 18 sensors and the reference values of five quality compo-
nents of honey (c). No. of origins from 1 to 14 represent different
botanical origins, whose specific corresponding relationships are shown
in Table 1

Fig. 2 Scatter plots of samples from 14 botanical origins based on PCA
(a) and DFA (b). Names of origins from 1 to 14 see Fig. 1
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two PCs that were relevant to their e-nose response. Values
with positive scores on PC1 were found for all samples from
China, while all samples from Australia and the samples from
lychee (7) and longan (8) had values with negative scores on
PC1. In general, samples from jujube (1), black locust (3),
Chinese milkvetch (4), lychee (7), and red stringybark (9)
were well separated from each other. Samples from other
botanical origins overlapped with each other. In Fig. 2b, sam-
ples from jujube (1), black locust (3), Chinese milkvetch (4),
miqueliana linden (6), lychee (7), and red stringybark (9) were
well separated from each other; samples of polyfloral honey
(2) and mandarin orange (5) overlapped; and samples from
other botanical origins were clustered together. As with the
PCA plot, all samples from Australia and the samples from
lychee (7) and longan (8) were located at the left side of
Fig. 2b, while the other samples from China were distributed
at the right side of Fig. 2b.

The PCA and DFA results showed that the e-nose could
discriminate honey from two geographical origins with rea-
sonable accuracy. DFA discriminated better than PCA for
botanical origins. However, samples from some botanical
origins overlapped each other in PCA/DFA scatter plots. The
successful discrimination of the samples from some botanical
origins (origins 1, 3, 4, 7, and 9 in the PCA plot and 1, 3, 4, 6,
7, and 9 in the DFA plot) was because their PCs/DFs were
different from each other and also from those of the samples
from other botanical origins (origins 2, 5, 6, 8, 10, 11, 12, 13,
and 14 in the PCA plot and origins 2, 5, 8, 10, 11, 12, 13, and
14 in the DFA plot). This is probably because the differences
in e-nose signal values of the successful distinguished samples
could be well extracted by the calculation of PCA/DFA and
sufficient to be detected in PCA/DFA scatter plots. Therefore,
the successfully distinguished samples were well separated
from the other samples, but it was difficult to distinguish the
other samples by PCA/DFA. This was probably because both
PCA and DFA are linear approaches. Non-linear correlation
between e-nose responses could not be retained after the PCA/
DFA calculation, which might explain the difficulties in dis-
crimination. Therefore, in order to improve the discrimination
between samples of different botanical origins, LS-SVM,
which is a non-linear modeling method, was investigated.
When the reference arbitrary numbers of samples were
assigned according to their geographical origins, binary num-
bers of −1 and +1 were used to represent China and Australia.
A LS-SVM discrimination model was established based on
the e-nose signals of samples and their reference arbitrary
numbers, and 100 % OA for geographical discrimination
was obtained based on the established LS-SVM discrimina-
tion model in both calibration and validation processes. The
samples from lychee (7) and longan (8) were correctly classi-
fied into the geographical origin of China, although they were
more close to the samples from Australia in both PCA and
DFA plots (Fig. 2).

When samples were assigned to the reference arbitrary
numbers according their botanical origins as shown in Table 1,
the established LS-SVM discriminationmodel also had 100%
OA for all botanical origins and 100 % SA for each botanical
origin in both calibration and validation processes. The sam-
ples of polyfloral (2) and mandarin orange (5) honey were
correctly distinguished from each other, and all samples pro-
duced in Australia from different botanical origins were also
identified correctly. This could not be achieved based on either
PCA plot or DFA plot (Fig. 2). These results show that the
non-linear correlations between e-nose responses were impor-
tant for the discrimination of botanical and geographical ori-
gins of honey. Therefore, the discrimination based on LS-
SVM algorithm, which is a non-linear modeling method,
was better than PCA and DFA methods, which are both linear
pattern recognition tools.

Furthermore, of the 18 sensors being used for the LS-SVM
discrimination, those critical for origin discrimination were
selected using the strategies UVE, SPA, and CARS. The
CARS-LS-SVM model obtained 96.4 % OA in both calibra-
tion and validation processes. Although the other twomethods
had similar results, only four sensors were selected by CARS,
while there were six and eight sensors selected by SPA and
UVE, respectively. Therefore, the best discrimination model
for botanical origins was the CARS-LS-SVMmodel. The four
sensors selected by CARS were LY2/AA, LY2/gCTl, P40/2,
and T40/2.

Quality Determination

Analysis Using All Sensors

The calibration of multivariate models was performed by
PLSR and LS-SVM algorithms based on the matrix C with
the fingerprints of honey from all e-nose sensors. ThematrixP
was then analyzed as a new test set based on the established
calibration models. Table 3 shows the predicted results of five
quality components (glucose, fructose, HMF, AA, and acidity)
of honey samples by analyzing the fingerprints from all e-nose
sensors using the calibration algorithms PLSR and LS-SVM.
It is obvious that LS-SVM models outperformed the corre-
sponding PLSR models. Compared with the PLSR models,
the RMSEV of LS-SVM models decreased by 29.83 to
62.07 %with an average of 47.08 %, while the RPD increased
by 44.74 to 163.77 % with an average of 101.03 %. These
results show that the non-linear correlations between e-nose
responses were important for the quality determination of
honey as found for the identification of botanical origin.
Therefore, the established LS-SVM models, which retain the
non-linear information, make better predictions than the cor-
responding PLSR models for the determination of glucose,
fructose, HMF, AA, and acidity of honey. Therefore, LS-SVM
was an effective method for both identification of botanical
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origin and quality determination of honey. With the exception
of fructose, the rV values of the LS-SVM models for the other
four components were higher than 0.9, showing that good
determination of these components was obtained. The deter-
mination of fructose using the e-nose was also with reasonable
accuracy with rVof 0.843. This confirmed that the e-nose with
all 18 sensors could be used for determining these quality
components of honey in a rapid and non-invasive way.

Sensor Selection

Establishing a simplified e-nose model involves the identifi-
cation of a reduced number of appropriate sensors. The fore-
going analysis of the fingerprints of honey from all e-nose
sensors did not take into account the possibility that some
sensors might contain useless information with regard to the
quality prediction of honey samples. Therefore, the important
sensors reflecting the characteristics of the e-nose for
predicting quality components of honey were selected using
the strategies UVE, SPA, and CARS. Table 4 shows the
statistical results of LS-SVM models developed using the
fingerprints from only the selected e-nose sensors for the
determination of glucose, fructose, HMF, AA, and acidity of
honey samples in the calibration and validation processes.

For glucose determination, similar results were obtained
for the LS-SVM models based on the sensors selected by
UVE, SPA, and CARS, respectively. However, it was notice-
able that the sensors selected by CARS were fewer than that
by the other two methods. This indicated that the CARS-LS-
SVM model was more robust than the other two models for
glucose determination. The AV_RMSE of the CARS-LS-
SVM model was only 0.044, which was only about 10 % of
those of the UVE-LS-SVM model (AV_RMSE=0.433) and
SPA-LS-SVM model (AV_RMSE=0.508). Considering that
the CARS-LS-SVM model had less AV_RMSE and fewer
sensors, the important sensors for glucose determination were

those selected by CARS. The sensors selected by CARS for
glucose analysis were LY2/gCTl, LY2/gCT, and P30/2.

For fructose determination, the AV_RMSE values from the
three models were similar. SPA selected only three sensors,
which was the fewest. However, the result from the SPA-LS-
SVM model was worse than the other two models. Consider-
ing that the CARS-LS-SVMmodel had fewer sensors than the
UVE-LS-SVM model, the important sensors for fructose de-
termination were determined as those selected by CARS,
which were LY2/LG, LY2/G, P30/2, T40/2, and T40/1.

For the HMF determination, the CARS-LS-SVM model
had a better prediction, fewer sensors, and less AV_RMSE
than those of other two models. Therefore, the sensors (LY2/
AA, P10/1, and T40/2) selected by CARS were determined as
the important sensors for HMF determination.

For the AA determination, the SPA-LS-SVM model and
CARS-LS-SVM model gave similar results, which were bet-
ter than that from the UVE-LS-SVM model. Considering that
the SPA-LS-SVM model (three sensors) had fewer sensors
than the CARS-LS-SVM model (five sensors), the important
sensors for AA determination were determined as those se-
lected by SPA, which were LY2/AA, LY2/gCT, and T40/2.

For the acidity determination, the UVE-LS-SVM model
and SPA-LS-SVM model gave similar results based on ten
and six sensors, respectively. When CARS was used for the
sensor selection, only four sensors were selected. Further-
more, the CARS-LS-SVM model outperformed the other
two models. Therefore, the sensors (LY2/G, P40/1, T70/2,
and P30/2) selected by CARS were determined as the impor-
tant sensors for acidity determination.

In conclusion, the CARS-LS-SVM models were the best-
selection-LS-SVM models for the determination of glucose,
fructose, HMF, and acidity, while the SPA-LS-SVM model
was the best-selection-LS-SVMmodel for AA determination.
The optimal sets of sensors were determined according to the
prediction accuracy, the number of selected sensors, and the

Table 3 Prediction results of five
quality components of honey
samples considering all 18
sensors

HMF hydroxymethylfurfural, AA
amylase activity
a Number of latent variables or
support vectors

Quality Calibration
model

Numbera Calibration Validation

rC RC
2 RMSEC rV RV

2RV
2 RMSEV RPD

Glucose PLSR 4 0.639 0.409 3.090 0.664 0.440 2.879 1.336

LS-SVM 56 0.988 0.975 0.631 0.959 0.919 1.092 3.524

Fructose PLSR 4 0.674 0.455 2.174 0.624 0.374 2.434 1.274

LS-SVM 56 0.974 0.937 0.738 0.843 0.692 1.708 1.844

HMF PLSR 7 0.711 0.505 24.783 0.732 0.526 25.426 1.459

LS-SVM 56 1.000 1.000 0.119 0.926 0.851 14.247 2.600

AA PLSR 7 0.841 0.708 0.787 0.814 0.662 0.841 1.720

LS-SVM 56 0.993 0.986 0.175 0.974 0.948 0.331 4.377

Acidity PLSR 5 0.864 0.747 1.653 0.838 0.703 1.779 1.834

LS-SVM 56 0.981 0.962 0.643 0.943 0.889 1.087 3.007
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robustness of the established models. The reason for the
selection of these optimal sensors was because the odor fin-
gerprints detected by the selected optimal sensors might have
some relationships with the odor of the predicted component
of honey. The selected sensors were proven to be useful and
important to establish the prediction models.

The performance of best-selection-LS-SVM models was
compared with the LS-SVM models established using the
fingerprints of honey from all 18 e-nose sensors (all-sensors-
LS-SVM model). It was found that the best-selection-LS-
SVM models had similar results compared with the corre-
sponding all-sensors-LS-SVM models for the determination
of glucose, fructose, AA, and acidity, whose RMSEV values
of the best-selection-LS-SVMmodels increased by 2.75, 0.94,
and 0.06 % and decreased by 2.27 %, respectively. On the
other hand, the sensor selection improved the result of
predicting HMF, where the RMSEVof its best-selection-LS-
SVM model decreased by 12.57 % compared with the corre-
sponding all-sensors-LS-SVM model. It should be noticed
that instead of using all 18 sensors in the all-sensors-LS-
SVM models, only three, five, three, five, and four sensors
were selected for the determination of glucose, fructose, HMF,
AA, and acidity, respectively. That means only 16.67, 27.78,
16.67, 16.67, and 22.22 % of the sensors were used for
determining five quality components of honey. The above
results show that the sensor selection in this study was effi-
cient in terms of maintaining the model’s accuracy and de-
creasing the sensor numbers. Moreover, the sensor selection
was also able to improve the model’s robustness, where the
AV_RMSE values of the best-selection-LS-SVM models de-
creased by 90.46, 46.19, 38.95, 29.25, and 30.28 % for the
determination of glucose, fructose, HMF, AA, and acidity,

respectively, compared with those of the corresponding all-
sensors-LS-SVM models.

As shown in Table 4, the e-nose is an efficient alternative
for determining the quality of honey rapidly and non-
invasively. For the analysis of five quality components, the
best performance of the e-nose based on the best-selection-
LS-SVM models was achieved for the determination of AA,
which had an RPD value higher than 4.5, followed by the
determination of glucose, HMF, and acidity that had RPD
values around 3, and the RPD value of fructose determination
was the lowest, but still over 1.5.

Conclusions

Mislabeling the botanical origin and quality components of
honey is economically advantageous to unscrupulous sup-
pliers, so labeling must be provided correctly with the aim
of guaranteeing the authenticity of botanical origin and
protecting the consumer from commercial exploitation. Tra-
ditional methods for identifying the botanical origin and de-
termining the quality of honey are rather complex and time-
consuming processes. In this study, the e-nose technique with
multivariate analysis algorithms was investigated as an effi-
cient analytical tool for identifying the botanical origin and
determining quality components of honey. Compared with the
linear pattern recognition methods like PCA and DFA, LS-
SVM, which could retain the non-linear information of the e-
nose, had better ability for discrimination of both geographical
origins and botanical origins with 100 % OA. Similar to the
analysis of origin identification, LS-SVM also proved to be

Table 4 Prediction results of LS-
SVMmodels for determining five
quality components of honey
samples considering only selected
sensors

HMF hydroxymethylfurfural, AA
amylase activity

Quality Sensor
selection

No. of
sensors

Calibration Validation

rC RC
2 RMSEC rV RV

2 RMSEV RPD

Glucose UVE 6 0.988 0.975 0.640 0.961 0.922 1.073 3.606

SPA 10 0.987 0.973 0.660 0.953 0.908 1.168 3.311

CARS 3 0.966 0.928 1.078 0.959 0.915 1.122 3.447

Fructose UVE 7 0.935 0.854 1.127 0.842 0.686 1.724 1.811

SPA 3 0.893 0.790 1.350 0.805 0.625 1.885 1.643

CARS 5 0.923 0.833 1.202 0.857 0.686 1.724 1.827

HMF UVE 8 0.995 0.988 3.798 0.914 0.791 16.881 2.188

SPA 6 0.996 0.988 3.913 0.787 0.583 23.855 1.568

CARS 3 0.995 0.988 3.832 0.942 0.886 12.457 2.965

AA UVE 8 0.991 0.981 0.201 0.964 0.929 0.384 3.766

SPA 3 0.989 0.977 0.221 0.974 0.948 0.331 4.387

CARS 5 0.987 0.974 0.233 0.977 0.954 0.310 4.681

Acidity UVE 10 0.984 0.966 0.609 0.937 0.876 1.150 2.847

SPA 6 0.969 0.934 0.842 0.934 0.869 1.180 2.771

CARS 4 0.975 0.947 0.753 0.948 0.894 1.062 3.119
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better than the linear regression method of PLSR for the
quality prediction of honey. These results show that the non-
linear correlations between e-nose responses were important
for the origin and quality analysis of honey. Moreover, sensor
selection was conducted for the first time to analyze e-nose
fingerprints of honey, resulting in only three, five, three, five,
and four sensors selected from 18 sensors in the e-nose for the
determination of glucose, fructose, HMF, AA, and acidity,
respectively. Sensor selection was shown to be efficient in
terms of maintaining the model’s accuracy, decreasing the
sensor numbers, and improving the model’s robustness. The
best-selection-LS-SVM models had an rV

2 of 0.915, 0.686,
0.886, 0.948, and 0.894 for the determination of glucose,
fructose, HMF, AA, and acidity, respectively, showing that
simple, fast, and low-cost e-nose systems with only the se-
lected sensors could be designed to refine this technique for
the quality assessment of honey without additional laborious
analysis. To the best of our knowledge, this is the first use of
an e-nose for measuring glucose, fructose, HMF, and amylase
activity of food products. The results of this study show that
the use of e-nose fingerprints combined with chemometrics
could identify the botanical origin and determine quality com-
ponents of honey accurately and efficiently, so that the fraud-
ulent labeling of honey could be prevented.
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