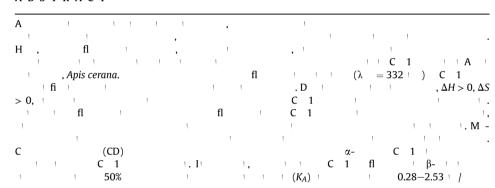


Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China


Jinhua Academy of Agricultural Science, Jinhua 321000, PR China College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China

ARTICLE INFO

Article history:					
	26 F	201	7		
Α	13 M	2017			
Α	1 1	14 M	2017		

	wor s ce	ds: rana						
C		1			1			
N	1	1						
В	1	1		1				
F		1	1	1				

ABSTRACT

15 . A 16. fi (AO) LD₅₀ .F 69.68 | / 17. ı fl 19,20. , Plutella xylostella, 21 , CSP1 | CSP2 | 22 , CSP1 Bombyx mori, Bemisia tabaci, 23. C 1 , Apis cerana. C 1 β- | | . Ι | A. cerana 25. A 26-28, fl fi C 1 , A. cerana,

2. Materials and methods

2.1. Chemicals and reagents

2.2. Preparation of recombinant CSP1 protein

$2.3. \ \ Multiple \ fluorescence \ spectra \ of \ CSP1 \ protein \ with \ imidacloprid$

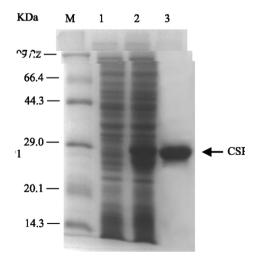
(1) F F-5301 , J). fl -281 | , 1 5 1 290-500 | . 1 1 $1~\mu~~L^{-1}$ В (H 7.4), L^{-1} fl 284 K 294 K.

(2) | | | fl | | (F) | . | F | λ | λ

2.4. Circular dichroism (CD) spectra

C 1 200-250 . 1: 0, 1: 0, 5 1: 4, C 1 CD ELCON3

2.5. Molecular docking analysis


C 1 Mamestra brassicae (DB C M A6 , 1 8) 32 VI -MODEL 3D 33. NCBI_(: 638014). B (MMD) 4.2 (C 1 1 M D 0 M D 34.

2.6. Functional inhibition of CSP1 by imidacloprid

3. Results and discussion

3.1. Expression of recombinant CSP1 protein and fluorescence quenching spectra

3.2. Synchronous fluorescence spectra

3.3. Fluorescence quenching mechanism

$$\frac{F_0}{F} = 1 + K_q \tau_0[Q] = 1 + K_{s\nu}[Q] \tag{1}$$

3.4. Thermodynamic analysis

$$\Delta G = -RT + K = \Delta H - T\Delta S \tag{2}$$

$$\Delta H = \frac{RT_1T_2 + (K_{0,2}/K_{0,1})}{T_2 - T_1} \tag{3}$$

$$\Delta S = (\Delta H - \Delta G)/T \tag{4}$$

$$\Delta G$$
, ΔH | ΔS | G | , | ΔH | ΔS | ΔG | ΔS | ΔG | ΔG

C 1 |
$$\Delta G < 0$$
, | | | $C = 1$ |

Table 2

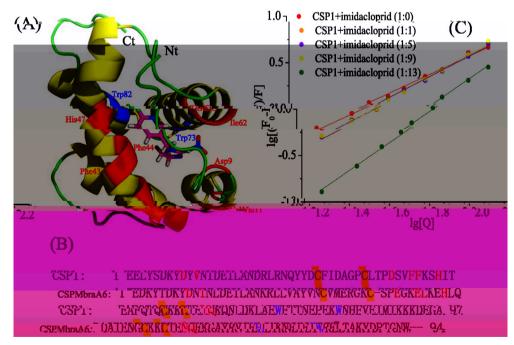
-7.3377 -6.9446

3.5. Circular dichroism (CD) spectra

CD		
1	1 1 1	49.
1	208	222 CD
	α-	50.
A $+ F . 3(C)$,	1	C 1
1	1 1	1, 1
1 1	1	1
, ,	1 1	C 1 .
	1	A 2 ,
1 1	1	1
1	46 .	

N E 44 -24.1035 G 63 -16.0482 A 9 -9.4608 A 43 -9.3838 A 40 -8.6277

E: 11 -4.0133


47

3.6. Molecular docking

A C M A6 (DB ID, 1 | 8) Mamestrabrassicae 32, -C 1 C M A6 (1 8) C 1 1 1 1 F . 4(B). A M D C 1 2), F . 3(A). B 1 1 C 1 11, 43, $(G \mid 63), 2$ 44, I 62), I (A 9 | A 40), (H 47) (F . 3(A)). F 1 (73 F . 3(A), 82) | C 1, C 1 1 1 1 fl fl 1 1 (F . 3(B)).

3.7. Functional inhibition of CSP1 by imidacloprid

$$\frac{F_0 - F}{F} = K_A + n \quad [Q] \tag{5}$$

K_A (1: 0) β