Betaine alleviates hepatic lipid accumulation via enhancing hepatic lipid export and fatty acid oxidation in rats fed with a high-fat diet Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310029, People's Republic of China (Submitted 15 October 2014 - Final revision received 9 February 2015 - Accepted 11 March 2015 - First published online 29 April 2015) #### **Abstract** (P < 5) Key words: # Materials and methods Animal experimental procedure Table 2. Primer-pairs of target genes used for real-time PCR | Gene | Forward primer (from 5' to 3')
Reverse primer (from 5' to 3') | PCR product size (bp) | GenBank accession number | |--------------|--|-----------------------|--------------------------| | β-Actin | GGA AAT CGT GCG TGA CAT TA | 183 | NM_031144 | | | AGG AAG GAA GGC TGG AAG GAG | | | | BHMT | GGGCAGAAGGTCAATGAAGCT | 108 | NM_030850 | | | ACCAATGCATCCCCTTCGT | | | | $PPAR\alpha$ | TGCGGACTACCAGTACTTAG | 167 | M88592 | | | CGACACTCGATGTTCAGTGC | | | | FGF21 | CGACAGAGGTATCTCTACACAGATGACG | 206 | NM_130752 | | | GATCCATAGAGAGTTCCATCTGGTTGTT | | | | AMPK | TGTGACAAGCACATTTTCCAA | 156 | NM_019142·2 | | | CCGATCTCTGTGGAGTAGCAG | | | | CPT1 | GCTCGCACATTACAAGGACAT | 250 | AF020776 | | | TGGACACCACATAGAGGCAG | | | BHMT, betaine-homocysteine methyltransferase; FGF21, fibroblast growth factor 21; AMPK, AMP-activated protein kinase; CPT1, carnitine palmitoyltransferase 1. ### Western blot analysis ### Statistical analysis ### Results ## Assessment of body weight ### Effects of betaine on serum lipid metabolites **Table 3.** Changes of body weight during 4 weeks (g) (Mean values and standard deviations, n7) | | Т | 1 | T | 2 | T | 3 | T | 4 | |------|--------|-------|--------|-------|--------|-------|--------|-------| | | Mean | SD | Mean | SD | Mean | SD | Mean | SD | | 0 d | 100.02 | 0.15 | 100-15 | 0.28 | 99-91 | 0.13 | 99-95 | 0.36 | | 7 d | 150.00 | 2.58 | 148.75 | 3.14 | 152.12 | 3.46 | 149-12 | 3.03 | | 14 d | 202.00 | 5.42 | 205.5 | 6.75 | 207.75 | 7.45 | 206.17 | 7.60 | | 21 d | 228.74 | 16.83 | 244.13 | 17.55 | 227.61 | 26.12 | 253.83 | 31.47 | | 28 d | 290.58 | 9.86 | 296.03 | 14.26 | 287-26 | 15.80 | 305.75 | 25.67 | T1, basal diet; T2, basal diet with betaine administration; T3, high-fat diet; T4, high-fat diet with betaine administration. Oral administration of betaine effectively alleviated the excessive accumulation of fat in the liver she tifferences fot eccumulation $olog call-42762 (sertions)-246.1 (ftaining)-244.9 (with)-244.94 \\ Oil-Red-O--244.2 (bere)-446.3 (tonc)-1268 (hmd)-546.3 \\ 1 by oimage-245.2 (sanaly of the context the$ ### Discussion Betaine increased the activity, gene and protein expression of fibroblast growth factor 21, and elevated the gene expression of AMP-activated protein kinase in the liver **Table 5.** Effects of betaine on hepatic lipid metabolism (Mean values and standard deviations, n7) | | T1 | | T2 | | Т3 | | T4 | | |--|--|------------------------------|---|-------------------------------|---|-------------------------------|---|-------------------------------| | | Mean | SD | Mean | SD | Mean | SD | Mean | SD | | TAG (mg/g) NEFA (μmol/g protein) TC (mg/g) Lecithin (ng/g) | 7.81 ^b 32.73 ^b 2.21 ^{b,c} 1.00 ^c | 0.66
9.16
0.17
0.05 | 7·47 ^b
39·44 ^b
2·46 ^{a,c}
1·10 ^b | 0.58
11.77
0.47
0.05 | 9·20 ^a
57·93 ^a
2·58 ^{a,c}
1·04 ^c | 1·42
12·76
0·48
0·05 | 7.96 ^b
67.08 ^a
2.76 ^a
1.17 ^a | 0·84
12·27
0·49
0·02 | (A) (B) (C) 3.5 3.0 ### Acknowledgements #### References - 2. g (11) Anim Feed Sci Tech 1., - Livest Sci 10 , 5. Anim Feed Sci Tech 11 , 151 159. , et al. (1) Gastroenterol , 11 1. - , et al. (1) - Obes Relat Metab Disord 28 - 1. Hepatology 1,) . , et al. (1) Chemerin | | | | | | | | | Mol Biol Rep | ,1 | 1 | | 1. (| L- (, (| L- , et al. (13) | 1) - J Nutr 1 , 3 . \mathbf{c} , \mathbf{v} , et al. () - Biochem Biophys Res Commun **§**, **3**3. - Hockett Biophys Res Commun 14, 93 9. 1, et al. (1) 2, - $\frac{1}{2}$ ad boc $\frac{1}{2}$ - , I, , II, et al. (1) n- n-3 (1) | Y Y Y | 11, 5 1. - - Am J Physiol Gastrointest Liver Physiol 2 8, | , et al. () , et al. () (Sus scrofa domestica). Comp Biochem Physiol A Mol Integr Physiol 1 , | |---| | 131. 1 | | 3. 4 , v , , , et al. (1) | | 31 | | 3. ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; | | 33. (, , et al. () , , et al. () , | | 3. , t , (, et al. () | | 35. , , , et al. (3) |