Betaine alleviates hepatic lipid accumulation via enhancing hepatic lipid export and fatty acid oxidation in rats fed with a high-fat diet

1	la l	la 🗋	ja –
T			

Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310029, People's Republic of China

(Submitted 15 October 2014 – Final revision received 9 February 2015 – Accepted 11 March 2015 – First published online 29 April 2015)

Ļ,

Abstract

 $\mathbf{v}^{\mathbf{t}} = \mathbf{100} \mathbf{f} \mathbf{250}, \quad \mathbf{v}^{\mathbf{t}} \mathbf{v}$

Key words:

1

1,.

Materials and methods

Animal experimental procedure

a) · γγ γ γγ · γγ · γγ · γγ

CrossMark

b $V = \frac{V}{V} + \frac{V}{V} +$ (1), (3) ¥ 74 -1 2 14 2 . $\frac{1}{2} = (1), \frac{1}{2}, \frac{3}{2}$

Sampling

2,

1 0.

Gene	Forward primer (from 5' to 3') Reverse primer (from 5' to 3')	PCR product size (bp)	GenBank accession number
β-Actin	GGA AAT CGT GCG TGA CAT TA	183	NM_031144
BHMT	AGG AAG GAA GGC TGG AAG GAG GGGCAGAAGGTCAATGAAGCT	108	NM 030850
ו ואוחם	ACCAATGCATCCCCTTCGT	100	NM_030830
$PPAR\alpha$	TGCGGACTACCAGTACTTAG	167	M88592
	CGACACTCGATGTTCAGTGC		
FGF21	CGACAGAGGTATCTCTACACAGATGACG	206	NM_130752
	GATCCATAGAGAGTTCCATCTGGTTGTT		
AMPK	TGTGACAAGCACATTTTCCAA	156	NM_019142.2
	CCGATCTCTGTGGAGTAGCAG		
CPT1	GCTCGCACATTACAAGGACAT	250	AF020776
	TGGACACCACATAGAGGCAG		

BHMT, betaine-homocysteine methyltransferase; FGF21, fibroblast growth factor 21; AMPK, AMP-activated protein kinase; CPT1, carnitine palmitoyltransferase 1.

Western blot analysis

Statistical analysis

		W	74	3 33 2 0.0	
1 W -	`	. (.).3		υ, ₩ υ [*]	,
ų.	-74	, 🗤		եւ ¹⁰⁴ են՝ ∵են՝ եւ	、 ,
	2.			· · · · · · ·	74 -
2			2	Υ	,
, Y		·	74	<i>P</i> <0 0 5 .	

Results

Assessment of body weight

	• •	74 74	' ų	74	y. 3.	
74	• • • • •	ja, [−]			٦. ب	74 -
			՝ խ	1	,	. –
	~ / `	(P>0 05) v			74	
	2	. 1 .	-		. 2	•

Effects of betaine on serum lipid metabolites

Table 3. Changes of body weight during 4 weeks (g)(Mean values and standard deviations, n 7)

	T1		T	2	т	3	T	Τ4		
_	Mean	SD	Mean	SD	Mean	SD	Mean	SD		
0 d	100.02	0.15	100.15	0.28	99.91	0.13	99.95	0.36		
7 d	150.00	2.58	148.75	3.14	152.12	3.46	149.12	3.03		
14 d	202.00	5.42	205.5	6.75	207.75	7.45	206.17	7.60		
21 d	228.74	16.83	244.13	17.55	227.61	26.12	253.83	31.47		
28 d	290.58	9.86	296.03	14.26	287.26	15.80	305.75	25.67		

T1, basal diet; T2, basal diet with betaine administration; T3, high-fat diet; T4, high-fat diet with betaine administration.

Oral administration of betaine effectively alleviated the excessive accumulation of fat in the liver

Betaine increased the activity, gene and protein expression of fibroblast growth factor 21, and elevated the gene expression of AMP-activated protein kinase in the liver

· · · ·		2		. V , .
л <u>,</u> , ,				
5 (). ()	74	2		(1),
- (3)	Y	(P<0 0 5)		
<i>FGF21</i> .			,	
(P<0.0 5)				
· · · · 21 · · · (3) · · ·			(1)	
. (3).	•	, `	,	74
	(3),	2	2	
· - · · · · ()			(P<0 0 5)
₩	(3),			

Table 5. Effects of betaine on hepatic lipid metabolism
(Mean values and standard deviations, n 7)

ر ب		(.), .	(3)	74	- 1	14
1	, <i>)</i>			K (. 5 (,
		05)			. A	MPK.	· ,
₩ AMPK	-	-	, -,	(-3). v	(1) _v	, J •	`

Discussion

ţ, 74 74 @17 7) h 74 b, 1,⁷⁴ 3 a 74 3 74 h 74 6 ţ, ĥ h Į, 'n (30) , ú ĥ (31) 74 77 b b, i, Ľ, 74 74 u, ™ ţ, ţ, Ļ,

	T1		T2		тз	3	Τ4		
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	
TAG (mg/g)	7·81 ^b	0.66	7.47 ^b	0.58	9·20 ^a	1.42	7.96 ^b	0.84	
NEFA (µmol/g protein)	32·73 ^b	9.16	39·44 ^b	11.77	57.93 ^a	12.76	67∙08 ^a	12.27	
TC (mg/g)	2·21 ^{b,c}	0.17	2.46 ^{a,c}	0.47	2.58 ^{a,c}	0.48	2.76 ^a	0.49	
Lecithin (ng/g) 1.00° 14.6/aLecithinepatic1anmol/gVLDL pr		0.05	1.10 ^b	0.05	1.04 ^c	0.05	1.17 ^a	0.02	

 3)	, ţı	et al. ⁽³³⁾	3) • • • • •	7 1 4	 , , -	ţ,	· , -		, , ,₹,	, (,	. v ,	. et	1 . ú	
(A)	3∙5 3∙0		(B)				(C)						
	2.5													

2. 1 Tf6 0Tm-36445oT(513025 TDhibitio62(8)-26its)-3(v51ctivity of hepTc1302)-45ntio2 1 Tf28 (uneam/g 866 200401 Tm/Cs61526 Tf0164450

et al. (1)

b,

ţ,

Ļ,

Ļ,

1

7.16

1

h

et al. $\begin{pmatrix} 0 \\ b \end{pmatrix}$

α

et al.⁽³⁾, ∇

v ۷ 74 · · · · · · 74 74 -BHMT ₩7

Ġ. խ ţ, ţ, 74 Ļ, ħ, ţ, , TH 74 ţ, ,⁽³²⁾.5

74 b հ h ţ, 74 b, h 77 b b

Ļ,

Ļ,

Sţ, ţ, Sţ, ¥), Γ Γ b, b (33,35) 74 b v b, T T ţ, **b** ۷ T T ¥ h ۷ *et al.*⁽³⁾ 74 74 3 📢 BHMT. _ h 1 74 (3) β α⁽³⁾. ţ, α , (3,0)

74

(

74

Q %

1

₩7

74 2

/100.

74

h

1) w

2

CPT1

, 🗤

ţ,

74

_

 $PPAR\alpha$

_

)

-/-

ú

ų, ,

(2,3) (*AMPK* (. . 5()), 2 1, ⁷⁴ AMPK CPT1. ų, , CPT1 b , 🕰 . 74 υ PPARα CPT1 Ļ, **2**1, ţ, (21. 74 `hí Ļ, 2 14 5% (), 74 , 21 ¥ , ,

۷ 21. 21 21, w 21 21 ้เพ Ļ, et al.⁽⁵⁰⁾ 21 Ç 2. **1**). . **1**α (, , 1 () 3 21 .**V** v# -> *n*r

1 2

 α_W h la. ΓL $\alpha, \ldots, 21$ TH .

Acknowledgements

1. 776 **(2012 12 05)**. 1.1 142 C . , ોતો), **L**., л_ы, L. ., W.

References

- 1. J = JJ J L & . . (201)2. 2. . .v. v.
- Amino Acids4, 1 5 1 $\frac{2}{3}$. Amino Acids4, 200), Am J Clin Nutr **2**. **3 (** 000) **90, 53 (5**) **3**. **3 (005)**
- և . *J Hepatol***4 2**, 0 13.
- . Asian-Austral J Animal Sci 22, 1 _b1 1 · 14
- , et al. @ 005) 5. . . . , . . . , ar ***** - a Nutr Res Rev **19**, 31
- ъ. · 74
- 74 74 . Anim v4 v4 · · ·
- . . . Anim Feed Sci Tech 1.,

- 10.
- 11. I -
- Livest Sci 10 , 5. k = 200) L^{-} k = 0. h = 0. f_{1} f_{2} f_{2} f_{3} f_{4} f_{4 12.
- Ober 7 Obes Relat Metab Disord 28 \$22 \$2 .
- 15. w & Q 00).
- 1. \mathbf{h} , $\mathbf{L}_{\mathbf{h}}$, $\mathbf{L}_{\mathbf{h}}$, *et al.* (20)2). Chemerin 1/2Mol Biol Rep , 1 1
- 1. \mathbf{L}^{-} , \mathbf{L}^{-} , \mathbf{L}^{-} , *et al.* (\mathbf{Q} 013)
- $\begin{array}{c} Food \ Chem, \ Toxicol \ 2,2 \ 2 \ 2 \\ 2 \ 0. \ 3 \\ , \\ & & & \\ &$
- . .▼ > .> ų į $J Nutr \mathbf{1}_{\mathbf{1}}, 3$
- **22**. **3**, \mathbf{x} , \mathbf{x} , \mathbf{y} , *et al.* **(2**00) **v** ...
- 23
 Y
 Y

 Y
 X

 Comp Clin Pathol 2
- **25.** LV &S. **b** (2001)**b** (V)
- $2_{i_{1}}^{-\Delta\Delta} \qquad . Methods 2, 0 = 0.$ $2 \qquad . \qquad _{i_{1}}, \mathbf{L} , \mathbf{L} , \mathbf{I} , \mathbf{et} \ al. \ 0 \ 01 \) \ n-n-3 \qquad \qquad \mathbf{V} \mathbf{V} \qquad . BrJ$ Nutr 111, 5 51.
- ▼
 ▼
 Am J Physiol Gastrointest Liver Physiol 28,
 3.2.

- 2 . $\gamma = \gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4} \gamma_{5} \gamma_{6} \gamma_{7} \gamma_$ tica). Comp Biochem Physiol A Mol Integr Physiol 1,
- 131
 1
 0.

 2
 .
 & .
- 30. $et al_{1} (2010)$

- N- (...) N-35.