

Betaine alleviates hepatic lipid accumulation via enhancing hepatic lipid export and fatty acid oxidation in rats fed with a high-fat diet

Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310029, People's Republic of China

(Submitted 15 October 2014 - Final revision received 9 February 2015 - Accepted 11 March 2015 - First published online 29 April 2015)

Abstract

(P < 5)

Key words:

Materials and methods

Animal experimental procedure

Table 2. Primer-pairs of target genes used for real-time PCR

Gene	Forward primer (from 5' to 3') Reverse primer (from 5' to 3')	PCR product size (bp)	GenBank accession number
β-Actin	GGA AAT CGT GCG TGA CAT TA	183	NM_031144
	AGG AAG GAA GGC TGG AAG GAG		
BHMT	GGGCAGAAGGTCAATGAAGCT	108	NM_030850
	ACCAATGCATCCCCTTCGT		
$PPAR\alpha$	TGCGGACTACCAGTACTTAG	167	M88592
	CGACACTCGATGTTCAGTGC		
FGF21	CGACAGAGGTATCTCTACACAGATGACG	206	NM_130752
	GATCCATAGAGAGTTCCATCTGGTTGTT		
AMPK	TGTGACAAGCACATTTTCCAA	156	NM_019142·2
	CCGATCTCTGTGGAGTAGCAG		
CPT1	GCTCGCACATTACAAGGACAT	250	AF020776
	TGGACACCACATAGAGGCAG		

BHMT, betaine-homocysteine methyltransferase; FGF21, fibroblast growth factor 21; AMPK, AMP-activated protein kinase; CPT1, carnitine palmitoyltransferase 1.

Western blot analysis

Statistical analysis

Results

Assessment of body weight

Effects of betaine on serum lipid metabolites

Table 3. Changes of body weight during 4 weeks (g) (Mean values and standard deviations, n7)

	Т	1	T	2	T	3	T	4
	Mean	SD	Mean	SD	Mean	SD	Mean	SD
0 d	100.02	0.15	100-15	0.28	99-91	0.13	99-95	0.36
7 d	150.00	2.58	148.75	3.14	152.12	3.46	149-12	3.03
14 d	202.00	5.42	205.5	6.75	207.75	7.45	206.17	7.60
21 d	228.74	16.83	244.13	17.55	227.61	26.12	253.83	31.47
28 d	290.58	9.86	296.03	14.26	287-26	15.80	305.75	25.67

T1, basal diet; T2, basal diet with betaine administration; T3, high-fat diet; T4, high-fat diet with betaine administration.

Oral administration of betaine effectively alleviated the excessive accumulation of fat in the liver

she tifferences fot eccumulation

 $olog call-42762 (sertions)-246.1 (ftaining)-244.9 (with)-244.94 \\ Oil-Red-O--244.2 (bere)-446.3 (tonc)-1268 (hmd)-546.3 \\ 1 by oimage-245.2 (sanaly of the context of the$

Discussion

Betaine increased the activity, gene and protein expression of fibroblast growth factor 21, and elevated the gene expression of AMP-activated protein kinase in the liver

Table 5. Effects of betaine on hepatic lipid metabolism (Mean values and standard deviations, n7)

	T1		T2		Т3		T4	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD
TAG (mg/g) NEFA (μmol/g protein) TC (mg/g) Lecithin (ng/g)	7.81 ^b 32.73 ^b 2.21 ^{b,c} 1.00 ^c	0.66 9.16 0.17 0.05	7·47 ^b 39·44 ^b 2·46 ^{a,c} 1·10 ^b	0.58 11.77 0.47 0.05	9·20 ^a 57·93 ^a 2·58 ^{a,c} 1·04 ^c	1·42 12·76 0·48 0·05	7.96 ^b 67.08 ^a 2.76 ^a 1.17 ^a	0·84 12·27 0·49 0·02

(A) (B) (C) 3.5 3.0

Acknowledgements

References

- 2. g (11) Anim Feed Sci Tech 1.,

- Livest Sci 10 , 5.

 Anim Feed Sci Tech 11 , 151 159.

 , et al. (1)

 Gastroenterol , 11 1.
- , et al. (1)
- Obes Relat Metab Disord 28

- 1. Hepatology 1,) .
 , et al. (1)

 Chemerin | | | | | | | | |

 Mol Biol Rep | ,1 | 1 | |

 1. (| L- (, (| L- , et al. (13) | 1)

- J Nutr 1 , 3 . \mathbf{c} , \mathbf{v} , et al. ()
- Biochem Biophys Res Commun **§**, **3**3.
- Hockett Biophys Res Commun 14, 93 9.

 1, et al. (1) 2, et
- $\frac{1}{2}$ ad boc $\frac{1}{2}$ $\frac{1}{2}$
- , I, , II, et al. (1) n- n-3 (1) | Y Y Y | 11, 5 1.
- - Am J Physiol Gastrointest Liver Physiol 2 8,

, et al. () , et al. () (Sus scrofa domestica). Comp Biochem Physiol A Mol Integr Physiol 1 ,
131. 1
3. 4 , v , , , et al. (1)
31
3. ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
33. (, , et al. () , , et al. () ,
3. , t , (, et al. ()
35. , , , et al. (3)