Effects of dietary fats on egg quality and lipid parameters in serum and yolks of Shan Partridge Duck

*College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China; †Zhejiang Animal Husbandry Techniques Extension Station, Hangzhou 310020, P. R. China; †Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China; †Department of Human Nutrition, Kansas State University, Manhattan, KS 66506, USA; #Zhejiang Zhuowang Agricultural Sci-Tech Co., Ltd, Huzhou 313014, P. R. China; and †Department of Emergency Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, P. R. China

INTRODUCTION

MATERIALS AND METHODS

Animals

first of the state of the state

Experiment Design

Table 1. d t f f f

I r	c' /r)r r r	c'(%) *
	400 290 120 90 12 80 1 1 1 1 1 1 1 1 1 1 1 1 1	11.2 16.5 0.70 3.35 0.79 0.40 29.0

Table 2.

(/					
1 f (/100 5 f m ()	d r	2%	2%	2%	2%
I	32.61	30.36	25.50	26.22	41.94
d14:0	5.32	5.80	3.88	3.44	5.52
C15:0	0.29	0.19	0.18	0.19	0.47
C16:0	21.23	18.57	15.81	16.07	24.11
C18:0	5.12	4.87	5.16	4.91	11.19
20:0	0.65	0.94	0.46	1.13	0.48
C22:0	0	0	0	0.35	0.06
C24:0	0	0	0	0.12	0.10
	37.75	34.65	33.03	48.50	36.90
C16:1	5.23	6.06	3.50	3.53	4.01
C18:1	31.2	25.42	28.53	42.39	32.04
20:1	1.32	1.23	0.96	2.50	0.84
C22:1	0	1.57	0.05	0.07	0
24:1	0	0.37	0	0	0
	29.84	35.12	41.59	25.40	20.25
$c^{18:2(}=6)$	18.77	12.73	18.67	17.42	12.93
C20:2 C20:3	0.11	0.78	0.07	0.12	0.07
(20:3	2.32	1.48	1.51	1.49	1.48
$C_{22:3(}=6)$	0	1.08	0	0	0
(20:4	0.46	0.69	0.38	0.29	0.25
22:4	0	1.08	0	0	0
C18:4	0	0.84	0	0	0
C18:3(=3)	6.22	4.42	19.69	4.83	4.21
$C_{20:5(}=3)$	0.98	6.14	0.64	0.63	0.60
22:5	0.65	0.86	0.42	0.44	0.35
$C^{22:6(}=3)$	0.33	5.01	0.21	0.20	0.18

Egg Quality Measurement

Oil and Yolk Lipid Analysis

Serum Lipid Parameter Analysis

Statistical Analysis

RESULTS AND DISCUSSION

Egg Quality Measurement

Yolk TC, TG, and Crude Fat Analysis

Table 3. I find f = 1 and f = 1 and

	7		i.	II.	17		1		1 1		7	1
	1 1(%)	<u>r</u> ()	(%)	r r (.f) r	()	ř ()	(1 1)	r	r ()	· r (%)
\vec{C}	0	74.03	1.33	4.34	0.43		6.60		12.38	73.64	24.56	0.34
l,c	0.5	71.65	1.35	3.97	0.40		5.88		12.46	73.06	22.95	0.32
	1	73.16	1.35	3.39	0.41		5.83		12.13	70.52	24.78	0.33
	2	72.24	1.35	4.11	0.43		6.18		11.39	73.48	23.43	0.33
1 .	0.5	71.58	1.35	3.88	0.41		4.74		12.70	61.16	23.16	0.32
	1	71.70	1.37	4.46	0.43		5.23		12.51	64.83	22.54	0.32
	2	74.97	1.32	4.12	0.44		6.83		12.16	73.12	23.16	0.31
	0.5	74.59	1.35	3.98	0.40		6.74		12.39	75.91	24.11	0.32
	1	72.20	1.34	3.98	0.40		6.37		12.61	73.03	22.73	0.32
	2	70.58	1.31	3.77	0.41		6.16		12.66	72.89	22.79	0.33
	0.5	71.09	1.35	3.72	0.41		5.67		12.38	67.23	22.88	0.32
	1	71.70	1.38	4.22	0.41		5.20		12.29	63.37	23.87	0.33
	2	72.32	1.38	3.62	0.39		6.36		12.71	74.68	22.91	0.32
		0.411	0.005	0.075	0.004		0.143		0.577	1.090	0.181	0.002
	\mathbf{C}_{j}	74.03	1.33	4.34	0.43		6.60		12.38	73.64	24.56	0.34
	1	72.35	1.35	3.83	0.41		5.96		13.11	72.35	23.72	0.020
		72.75	1.35	4.16	0.43		5.60		14.68	66.37	22.95	0.016
		72.46	1.33	3.91	0.40		6.42		12.55	73.94	223.21	0.016
		71.70	1.37	3.85	0.40		5.74		12.46	68.43	23.22	0.016
1	0	74.03	1.33	4.34	0.43		6.60		12.38	73.64	24.56	0.34
	0.5	72.23	1.35	3.89	0.41		5.66		14.98	69.34	23.28	0.32
	1	72.19	1.36	4.01	0.41		6.38		12.39	67.94	23.48	0.33
	2	72.53	1.34	3.90	0.42		6.60		12.23	76.54	23.07	0.32
						P 1						
		0.12	0.053	0.64	0.075		0.35		0.51	0.81	0.43	0.22
7		0.77	0.61	0.94	0.17		0.079		0.060	0.12	0.66	0.49
	\times I \times	0.089	0.29	0.84	0.28		0.061		0.19	0.20	0.54	0.62

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1</t

	1 t ;	<u>, t</u> ,	,. 1	$\mathbf{f}_{\hat{\mathbf{r}}} (=3).$
1	1 1 1 (%)	(½)	(\(\frac{1}{1} \)	(
C_1^1	0	16.16	753.7	30.52
-	0.5	14.65	746.7	31.39
	1	14.16	753.4	31.68
	2	14.11	751.4	31.90
1	0.5	14.64	747.5	31.49
	1	14.41	751.3	31.54
	2	14.13	753.1	31.91
1	0.5	14.50	754.6	31.43
	1	14.63	757.3	31.68
	2	14.50	760.7	31.90
1	0.5	16.05	764.3	31.31
	1	16.11	769.7	32.00
	2	16.40	772.7	32.28
		0.14	1.8	0.21
	C_2^1	16.16^{1}	753.7	30.52
		14.31^2	750.5	31.66
	2	14.39^2	750.6	31.65
	2	14.54^2	757.5	31.67
	2	16.22^{1}	768.9	31.86
1	0^1	16.16	753.7	30.52
	0.5^{3}	14.96	753.3	31.41
	1^{3}	14.83	757.9	31.73
	2^{3}	14.80	759.5	32.00
			P Λ	
		< 0.001	0.19	0.97
1		0.11	0.10	0.30
	\times 1	0.040	0.99	0.98

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>	55 1f m	(/100	ţ	٠ ·		1 f	1 1	f .	1 5 1	f	5. T fl	Table 5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-6/ -3	$(\overset{\text{C}}{=}3)$	$(\overset{\text{C}}{=}3)$	$(\overset{\text{C}}{=}3)$	-3	$(\overset{\text{C}=6)}{=6})$	$(\stackrel{\text{C}}{=} 6)$	-6 	ı	ı	I	1 1 1	7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23.96	0.27	0.05	0.32	0.65	2.32	13.17	15.89	16.54	47.18	36.28	0	C^{1}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.30	1.39	0.63	0.79			15.39	17.70	21.04	38.97	34.28	0.5	c_1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.97	1.48	0.67	0.81				17.69	21.19	38.62	34.33		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.98	1.56	0.72	0.76	3.04	2.85	15.26	18.11	21.73	39.44	32.79		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.02	1.23	0.49	1.27	2.99	2.55	18.40	20.95	24.47	40.85	31.60	0.5	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.64	1.28	0.45	1.41		2.58	18.34	20.89	24.37	41.50	30.87		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.45	1.36	0.52	1.44	3.32	2.64	18.66	21.30	24.99	44.80			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.23	0.81	0.17	0.90	1.88		19.07	21.14	23.62	45.44	30.38	0.5	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.05	0.94	0.21	0.99	2.14	2.17	19.31	21.48	23.93	45.36	30.03		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.12	0.94	0.24	1.04	2.23	2.34	20.23	22.49	25.12	44.38	29.90	2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.72	0.39	0.02	0.31	0.73	1.76	12.98	14.74	15.93	49.90	33.90	0.5	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.98	0.35	0.03	0.34	0.71	2.03	12.93	14.95	16.10	49.18	34.42	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22.55	0.38	0.02	0.32	0.72	2.46	13.08	15.54	16.73	47.68	35.24	2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.137	0.075	0.041	0.065	0.165	0.054	0.436	0.448	0.573	0.629	0.373		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23.96		0.05	0.32							36.28	C_{-}^{1}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.08	1.48	0.67	0.79	2.94	2.61	15.23	17.83	21.32	39.01	33.80	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.70	1.18	0.48	1.37	3.15	2.59	18.47	21.05	24.61	42.38	30.83	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.47	0.89	0.21	0.99	2.08	2.19,	19.54	21.70	24.22	45.06	30.16		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.42	0.37	0.02	0.32	0.72	2.08	13.00	15.08	16.26	48.92	34.52	2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23.96	0.27	0.05	0.32	0.65	2.32	13.17	15.49	16.54	46.94	36.28	0^{1}	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.87	0.48	0.06	0.47	1.01	2.08	14.52,	16.59,	18.40	48.05	33.52	0.5^{3}	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.46	1.01	0.35	1.18	2.62	2.41^{-}	19.07	21.45	24.47	43.02	30.59	1^{3}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.17	1.45	0.63	0.95	3.03	2.62	16.08	18.70	22.24	40.46	32.86	2^{3}	
0.14 0.60 < 0.001 0.001 0.037 < 0.001 < 0.001 0.040 < 0.001 0.004													
	< 0.001												
	0.95												7
\times 1 0.047 0.022 0.44 0.30 0.037 0.033 0.042 0.093 0.016 0.059	0.50	0.059	0.016	0.093	0.042	0.033	0.037	0.30	0.44	0.022	0.047	1	×

Serum Lipid Parameter Analysis

C22:6 (-5) Figure 2. f -3 P < 0.05). $C^{18:3}(-3), C^{20:5}(-3),$

■FL ▲R ×T

0

0.50%

r lf r Table 6. I fl f (=3).f

· · · · · · · · · · · · · · · · · · ·	c	2%	2%	2%	2%		P \
(1/)	1.51 ± 0.04	1.48 ± 0.08	1.31 ± 0.07	1.35 ± 0.05	1.66 ± 0.16	0.15	< 0.001
d(V)	5.74 ± 0.31	5.59 ± 0.06	5.61 ± 0.13	5.52 ± 0.20	5.92 ± 0.16	0.04	0.011
-d()	1.06 ± 0.11	1.11 ± 0.08	0.99 ± 0.07	1.11 ± 0.04	1.09 ± 0.07	0.02	0.058
-C(\))	2.12 ± 0.05	2.11 ± 0.04	2.07 ± 0.03	1.85 ± 0.06	2.24 ± 0.07	0.03	< 0.001
<u>-</u> G(¼)	$1.05~\pm~0.03$	$1.11~\pm~0.06$	$1.17~\pm~0.05$	$1.42~\pm~0.07$	$1.11~\pm~0.05~^{,}$	0.03	< 0.001
ff ff	t t t	ř . 1	ff f. 51	(P < 0.05).			

(2013 +31880) f . 1 $(2012 \, \text{c}^{12906-14}).$ t t t ffC 1.

CONCLUSIONS

0

0.50%

1.00%

Fatlevel.

1 (f 1 f Shan Partridge Duck , f f

ACKNOWLEDGMENTS

t & C_{l}

REFERENCES

1.50%

Fat level

2.00%

C₂₀₁₁. -3 -3 f $.\,\, 52{:}750\,\,\, 760.$ 1997. $\mathbf{f}^{\mathbf{r}}$ 1 108:269 274. . 2004. . 33:266 273. . 2007. ۲