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Little is known about the influences of other porcine circovirus type 2 (PCV2) proteins on the
immunogenicity of Cap protein. Here we constructed plasmids expressing the ORF1 (pORF1) and ORF3
(pORF3) of PCV2, and mixed either of them with the plasmid expressing ORF2 (pORF2) as combined DNA
vaccines, to compare their immunogenicity and protective efficacy. Our data revealed that pORF1 reduced
the Cap-specific CD8+cell frequency, and both pORF1 and pORF3 attenuated the Cap-specific Th1 and post-
challenge-recall VN antibody responses induced by the pORF2 plasmid, despite successful induction of Rep
and ORF3 antibodies by pORF1 and pORF3, respectively. Subsequently, protocols with pORF1 or pORF3
showed significantly decreased protective efficacy compared to pORF2 alone. Overall, our data suggested
that the ORF1- and ORF3-encoded Rep and ORF3 proteins may interfere with the cellular, humoral and
protective immunity of the ORF2-encoded Cap protein in vivo.

© 2009 Elsevier Inc. All rights reserved.
Introduction
Porcine circovirus (PCV) is a nonenveloped, single-stranded,
circular DNA virus with a diameter of 17 nm (Tischer et al., 1982).
PCV was first discovered as a noncytopathic contaminant of the
porcine kidney cell culture PK-15 (Tischer et al., 1974). The PK-15-
derived PCV, designated PCV1, did not produce clinical disease in
experimentally inoculated pigs and was considered to be nonpatho-
genic (Allan et al., 1995; Tischer et al., 1986). In contrast, PCV2 was
identified as the primary etiological agent of an emerging disease in
1991, named postweaning multisystemic wasting syndrome (PMWS)
(Allan et al., 1998; Allan and Ellis, 2000; Clark, 1997). PMWS is
considered an important swine disease and has had a serious
economic impact on the global swine industry. This disease affects
pigs from 5 to 12 weeks of age, with 5–30%morbidity. Clinical signs of
the disease include progressive weight loss, difficult breathing,
dyspnea, and jaundice (Clark, 1997). In addition to PMWS, PCV2 is
also associated with pneumonia, enteritis, reproductive failure,
porcine dermatitis and nephropathy syndrome (PDNS) and a variety
of other manifestations (Opriessnig et al., 2007).

The complete genomic sequences of PCV1 and PCV2 have been
determined (Hamel et al., 1998; Meehan et al., 1997, 1998; Zhou et
al., 2006). The overall DNA sequence homology within PCV1 or PCV2
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isolates is greater than 90%, while the homology between PCV1 and
PCV2 isolates is 68 to 76%. PCV2 possesses 3 confirmed ORFs: ORF1
located on the viral plus-strand, ORF2 and ORF3 on the counter-
clockwise strand, with lengths of 945, 702 and 315 nts, respectively.
PCV2 ORF1 encodes a 35.7 kDa replication protein (Rep) involved in
virus replication (Mankertz et al., 1998). PCV2 ORF2 encodes a
27.8 kDa capsid protein (Cap) involved in viral immunogenicity
(Mahe et al., 2000; Nawagitgul et al., 2000; Truong et al., 2001).
PCV2 ORF3 protein is not essential for PCV2 replication, but involved
in PCV2-induced apoptosis (Liu et al., 2005).

As the primary immunorelevant protein, PCV2 Cap protein
expressed in insect cells (Nawagitgul et al., 2000) or Escherichia
coli (Zhou et al., 2005a) could be detected by sera of pigs
experimentally infected with PCV2. In addition, multiple immuno-
reactive regions (Mahe et al., 2000) and epitopes (Lekcharoensuk
et al., 2004; Shang et al., 2009) have been identified. Monoclonal
antibodies against Cap protein show neutralizing activity against
PCV2 (McNeilly et al., 2001; Zhou et al., 2005a), suggesting the
protein contains at least 1 neutralizing epitope on the virus. In
contrast to Cap, limited information is available on the immuno-
genicity of Rep and ORF3 proteins. Utilizing PEPSCAN analysis, one
immunoreactive area (aa 185–211) was identified in PCV2 Rep
protein (Mahe et al., 2000). In another study, 2 immunoreactive T
lymphocyte epitopes in Rep protein (aa 81–100 and aa 201–220)
and 1 in ORF3 protein (aa 31–50) were demonstrated (Stevenson
et al., 2007).

PCV2 Cap protein has been studied intensely as vaccine antigen
due to its excellent immunogenicity (Blanchard et al., 2003; Fan et al.,
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Table 1
PCV2 Cap-specific lymphoproliferative response and FCM analysis of mice splenocytes.

Group SI Immunophenotypic cells

CD4+ (%) CD8+ (%)

pORF2 + pCI 1.54±0.32a 15.80±0.67a 14.94±2.56a

pORF2 + pORF1 1.38±0.13a 14.00±2.87a 11.58±2.41b

pORF2 + pORF3 1.36±0.20a 13.07±1.75a 12.08±1.83a,b

DNA control 1.00±0.00b 9.40±3.80b 11.63±2.17b

a, bDifferent superscripts within columns represent significant differences between
groups (Pb0.05).
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2008; Fenaux et al., 2003; Kamstrup et al., 2004; Song et al., 2007;
Wang et al., 2006). By using ORF2-based DNA and subunit vaccines in
mice, we previously demonstrated that Cap-specific CD8+ T cells
and virus-neutralizing (VN) antibody correlating mainly with IgG2a
play crucial roles in protective immunity against PCV2 (Shen et al.,
2008). In contrast, Rep and ORF3 proteins are generally considered
weakly immunogenic and seldom used as vaccine antigens. At this
time, their immunorelavent characteristics in vivo remain unclear.
Since Rep or ORF3 antigens alone may be insufficient to provide
adequate immunity against PCV2, combining them with Cap would
be an alternative approach to examine their effects on viral
immunogenicity. Based on this hypothesis, using a mixed DNA
vaccine strategy, we investigated the influences of ORF1 and ORF3
plasmids on the immunogenicity of the ORF2 plasmid. Our results
suggest that ORF1 or ORF3 DNA vaccines reduce the immunogenic
properties and efficacy of ORF2 DNA vaccines. Our data help
elucidate the effect PCV2 Rep and ORF3 proteins play in the onset
of immunity in the host.

Results

In vitro expression of mammalian expression vector

Recombinant plasmids expressing PCV2 ORF1 and ORF3 were
constructed for use as DNA vaccines. Plasmids were confirmed by
PCR, restriction enzyme digestion, and DNA sequencing. In vitro
expression of protein was analyzed by transient transfection
followed by immunoperoxidase monolayer assay (IPMA). When
detected with swine PCV2-positive serum, strong signals in
pORF1-transfected cells but lacking in pORF3-transfected cells
were observed (Fig. 1). However, both of the expressed proteins,
localized in nuclei of transfected cells, reacted strongly with the
Rep or ORF3 antisera respectively (Fig. 1). As controls, signals
were not observed in cells transfected with pCI-neo vector
(Fig. 1). The results indicate that the recombinant vectors, pORF1
and pORF3, may express the Rep and ORF3 proteins respectively
in vivo.
Fig. 1. Expression of PCV2 Rep and ORF3 proteins in vitro. PCV-free PK-15 cells were transfect
The plasmid and antibody (in parentheses) used for each transfection and detection are ind
anti-Rep, rabbit anti-ORF3, and swine anti-PCV2 sera separately.
Cap-specific cellular immune responses

The Cap-specific lymphoproliferative responses, CD4+ and CD8+

cell frequencies of vaccinatedmice were determined and compared at
8 weeks post the first immunization (p.i.). As shown in Table 1,
splenocytes from all the vaccine groups showed proliferative
responses when compared to the control mice, with greater statistical
difference in pORF2 + pCI group (Pb0.01) than the pORF2 + pORF1
(Pb0.05) and pORF2 + pORF3 (Pb0.05) groups. For flow cytometric
analysis, compared with the control group, significantly higher
proportions of CD4+ cells were observed in pORF2 + pCI (Pb0.01),
pORF2 + pORF1 (Pb0.01) and pORF2 + pORF3 (Pb0.05) groups;
however, in the case of CD8+ cells, only the pORF2 + pCI group had a
significantly higher frequency than the control (Pb0.05) (Table 1).
Comparing among the vaccine groups, the CD8+ cells in pORF2+

pORF1 group was significantly lower than that in pORF2+ pCI group
(Pb0.05), suggesting a suppressive effect of pORF1 plasmid to the
Cap-specific CD8+ cell frequency induced by the pORF2 plasmid.

Total IgG antibody response to PCV2 Cap protein

Total IgG antibody titers against Cap protein were compared
among groups. Plasmids pORF2 + pCI elicited the highest antibody
response at 4–16 weeks p.i., with the peak IgG titer of 11.2±1.3
log2 at 12 weeks (Fig. 2A). As for the co-administration groups, the
combined use of pORF1 and pORF3 induced peak titers of 5.6±3.8
ed with pORF1, pORF3 or pCI-neo, fixed at 48 h post-transfection, and detected by IPMA.
icated on top of each panel; cells transfected with pCI-neo were detected with mouse



Fig. 2. Kinetics of total IgG (A) and IgG isotypes (B) against Cap protein at various times p.i. or p.c. The IgG, IgG1 and IgG2a titers were measured by indirect ELISA. Error bars show the
standard deviations (n=5). The letters ‘a’ and ‘b’ above columns indicate a significantly higher IgG isotype with values of Pb0.05 and Pb0.01, respectively, at the same time in a
group. Mice were challenged at 16 weeks p.i.
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log2 (10 weeks p.i.) and 6.3±3.4 log2 (12 weeks p.i.), respectively
(Fig. 2A). Statistically, the Cap-specific IgG in group pORF2 + pCI
were significantly higher than that in pORF2 + pORF1 (at 12–
16 weeks) and pORF2 + pORF3 (at 10–12 weeks) groups (Pb0.05).
These data suggest that the co-administrations of pORF1 or pORF3
attenuated the Cap-specific antibody responses elicited by the
pORF2 plasmid.

IgG isotype profiles against PCV2 Cap protein

The different vaccination approaches can affect the antibody
isotype and T-helper (Th) cell type of an immune response; IgG2a is
produced as a consequence of Th1-cell activation, whereas Th2-cell
activation enhances the production of IgG1 and suppresses IgG2a
(Mosmann and Coffman, 1989). To better understand the types of
immune responses, we examined the IgG isotype profiles against Cap
protein. In general, vaccinated mice developed higher IgG2a titers
than IgG1, with significant differences in pORF2+ pCI (at 8–16 weeks
p.i.) and pORF2+ pORF3 (at 6–10 and 14 weeks p.i.) groups (Pb0.05)
(Fig. 2B), suggesting a Th1 immune response during the corres-
ponding period. Following challenge, titers of IgG1 and IgG2a
increased to varying levels in all groups, but the isotype profiles
remained similar to that prior to challenge. Interestingly, no anti-Cap
IgG1 antibodies were detected in pORF2 + pORF1 vaccinated mice
even after the PCV2 challenge; however, the non-significant diffe-
rences between IgG1 and IgG2a titers revealed a non-biased Th
response in this group. Overall, our data suggest that the pORF1 and
pORF3 plasmids shorten the duration of Th1 responses induced by
pORF2.

Total IgG and isotype profiles to PCV2 Rep and ORF3 proteins

The total IgG and isotype profiles against PCV2 Rep or ORF3
proteins were detected in the corresponding groups. As shown in
Fig. 3A, low levels of anti-Rep IgG were detected in mice of pORF2 +
pORF1 group, with a peak titer of 6.0±3.3 log2 at 16 weeks p.i.
Following challenge, control mice also developed Rep-specific IgG,
with a peak titer of 6.8±2.7 at 4 weeks post challenge (p.c.). The anti-



Fig. 3. Kinetics of antibody responses to PCV2 Rep and ORF3 proteins induced by different vaccine combinations. The total IgG levels against Rep (A) and ORF3 (B) proteins, and the
IgG isotypes specific for Rep (C) and ORF3 (D) proteins are shown for each group. The IgG, IgG1 and IgG2a titers were measured by indirect ELISA. Error bars show the standard
deviations (n=5). The letter ‘a’ above column indicates a significantly higher IgG isotype (Pb0.05) at the same time in a group. Mice were challenged at 16 weeks p.i.
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ORF3 IgG levels maintained between 9.4 and 12.3 log2 during 8 to
16 weeks p.i. in pORF2 + pORF3 vaccinated mice, whereas titers as
low as 4.6–5.0 log2 were detected in control mice at 2 to 6 weeks p.c.
(Fig. 3B). Antibody isotype analysis revealed that, except for the anti-
Rep IgG1 in pORF2 + pORF1 group which were significantly higher
than IgG2a at 4 to 6 weeks following challenge, no significant diffe-
rences between IgG1 and IgG2a against Rep or ORF3 proteins were
observed, suggesting a non-biased Th response to Rep or ORF3
following immunization in both groups (Figs. 3C–D).
Table 2
Neutralizing antibody titers of themice immunizedwith different vaccine combinations.

Group No. of mice with VN antibody/no. detected
(mean VN titer±SD) at weeks p.c.a

2 4 6

pORF2 + pCI 3/5 (320±320)b 5/5 (456±527)b 5/5 (648±630)b

pORF2 + pORF1 0/5 (0)c 3/5 (12±11)c 3/5 (48±44)c

pORF2 + pORF3 0/5 (0)c 0/5 (0)c 0/5 (0)c

DNA control 0/5 (0)c 1/5 (4±9)c 2/5 (8±11)c

aVN titers are expressed as the maximum serum dilution yielding a 70% reduction in
fluorescent focus number. Mice with VN titers ≥20 were considered positive. “0” value
is equal to “b20”.
b, cDifferent superscripts within columns represent significant differences between
groups for each week p.c. (Pb0.05).
VN antibody responses to PCV2

The ability of mouse sera to neutralize PCV2 infection was
detected by VNT in parallel with the ELISA test. Prior to virus
challenge, there were no detectable neutralizing antibodies in any
group (data not shown). After challenge with the PCV2 strain HZ0201
at 16 weeks p.i., strong anamnestic VN antibody responses were
observed in pORF2 + pCI group, which increased steadily peaking at
6 weeks p.c. (Table 2). In contrast, mice in pORF2 + pORF1, pORF2 +
pORF3 and control groups exhibited weak recall VN antibody
responses. Statistically, pORF2 + pCI group showed significantly
higher VN titers than pORF2 + pORF1 and pORF2 + pORF3 groups
throughout the entire post-challenge period (Pb0.05) (Table 2).
These results suggest that the combined use of pORF1 or pORF3
markedly attenuated the pORF2-primed recall VN antibody responses
following PCV2 infection.

Protection from PCV2 challenge

No clinical signs or gross lesions were observed in the challenge
control group. Microscopic lesions included lymphocyte depletion
and infiltration of histiocytes in splenic follicles as described
previously (Shen et al., 2008). In the unchallenged control group, no
abnormal follicles were found in the spleen at 6 weeks p.c. (Fig. 4).



Among the DNA vaccine groups, mice immunized with pORF2 + pCI
had the lowest lesion frequency (14.6±6.4%) and showed a
significant difference with the challenged control mice (38.7±5.9%)
(Pb0.01) (Fig. 4). However, plasmid mixtures of pORF2 + pORF1 and
pORF2 + pORF3 demonstrated similar lesion frequencies to that of
the challenge control group.

Further, we quantified the PCV2 DNA in serum of challenged mice
using real-time PCR. Following PCV2-inoculation, all mice in pORF2+
pORF3 and control groups were positive for PCV2 DNA at 2, 4, and
6 weeks p.c. Fewer mice in the pORF2 + pCI and pORF2 + pORF1
groups were positive for PCV2 DNA throughout the post challenge
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could significantly decrease IL-12 and increase TNF-α level in mice
(An et al., 2008). The impaired IL-12 level may affect the development
of a Th1 immune response, since IL-12 is thought to directly augment
Thl differentiation during Th cell priming (Seder et al., 1993). Further,
the elevated pro-inflammatory cytokine TNF-α, clinical signs, and
lethal rate (9/15) observed in ORF3 plasmid inoculated mice in the
above study (An et al., 2008) demonstrated the pathogenic role of
ORF3 protein in vivo, which may also account for the weak Cap-
specific Thl immunity observed in pORF2 + pORF3 group.

It has been shown that PCV2 vaccines are an effective tool to
reduce losses in swine herds caused by PCV2-associated disease.
Currently there are several types of antigens available in commercial
vaccines, including PCV2 expressed in a killed baculovirus vector, an
inactivated PCV2 virus, a killed chimeric PCV1–2 virus, and Cap
protein expressed in a baculovirus system (Opriessnig et al., 2007).
According to our data, the Rep and ORF3 proteins presented in the first
three vaccines may interfere with the Cap-induced protective
immunity against PCV2 infection. However, it should be pointed out
that Rep and ORF3 proteins may be overexpressed in our study, and
the expression abundance of ORF1, 2 and 3 may not reflect the real
situation in a virus infection, or a virus antigen stock. Therefore, it
needs further study to investigate how great the suppressive effects of
Rep and ORF3 proteins may have in a commercial vaccine.

Overall, in the present study, we investigated the influences of the
pORF1 and pORF3 on the immunogenicity of the pORF2 by comparing
the antigen-specific cellular and humoral immune responses as well
as protective efficacy. We demonstrated the suppressive effects of
plasmid-encoded Rep and ORF3 proteins on the immunogenicity of
Cap in mixed DNA vaccinations. Uncovering such interactions will
undoubtedly lead to further understanding of the immunogenicity of
PCV2, and ultimately, improved vaccines.

Materials and methods

Cells, virus, proteins, antisera and mice

A PCV-free PK-15 cell line was maintained in minimal essential
medium (MEM, Gibco, Grand Island, NY) supplemented with 10%
heat-inactivated fetal bovine serum (FBS, Gibco). The virulent PCV2
isolate HZ0201 was originally isolated from pigs with naturally
occurring PMWS (Zhou et al., 2006) and serially passaged in PK-15
cells 15 times. PCV2 Rep and Cap proteins were generated as
described previously (Li et al., 2007; Zhou et al., 2005a). PCV2 ORF3
proteins were expressed in E. coli BL21 by recombinant pGEX-4T-1
vector (Amersham, Pharmacia Biotech AB, Uppsala, Sweden) insert-
ing PCV2 ORF3 (unpublished data). Swine anti-PCV2 serum was
acquired from piglets experimentally infected with PCV2 isolate
HZ0201. Mouse anti-Rep and rabbit anti-ORF3 sera were obtained by
immunizing animals with the prokaryotic expressed Rep and ORF3
proteins, respectively. Female BALB/c mice were purchased from
Shanghai laboratory animal center (Chinese Academy of Sciences,
Shanghai, China) and bred in automatic extrusion independent
venting isolation cages (Fengshi laboratory animal equipment Co.
Ltd., Suzhou, China).
Table 4
Summary of experimental treatments.

Groups Mouse no. Immunizations LPA and FCMa

(wk 0, 2, 4)

pORF2 + pCIb 10 pORF2 and pCI-neo Mouse splenocytes we
prepared at 8 wk p.i.pORF2 + pORF1b 10 pORF2 and pORF1

pORF2 + pORF3b 10 pORF2 and pORF3
DNA controlc 15 pCI-neo

a Each treatment includes 5 mice.
b Mouse was vaccinated with 100 μg of each plasmid in 100 μl volume.
c Mouse was vaccinated with 200 μg of pCI-neo in 100 μl volume.
Construction and preparation of the DNA vaccines

PCV2 ORF1 and ORF3 were amplified from the genomic DNA of
HZ0201 (GenBank accession no. AY188355) using the specific primers
as follows: forward (5′-ATAACGCGTCATGCCCAGCAAGAAG-3′) and
reverse primer (5′-GCGGTCGACGACTCAGTAATTTATTTCATATGG-3′)
for ORF1, and forward (5′-TAAGTCGACCTTACTGATGGAGTGTGG-3′)
and reverse primer (5′-ATAACGCGTATGGTAACCATCCCAC-3′) for
ORF3. The PCR products were cloned into a mammalian expression
vector pCI-neo (Promega, Madison, WI) to generate the expression
vectors pORF1 and pORF3, respectively. To determine the expression
of Rep and ORF3 proteins in vitro, PCV-free PK-15 cells were
transfected with the recombinant plasmids by Lipofectin Reagent
(Invitrogen, Carlsbad, CA). At 48 h post-transfection, cells were fixed
and detected by an immunoperoxidase monolayer assay (IPMA)
(Zhou et al., 2005a) using the swine PCV2-positive serum, or the
mouse anti-Rep or rabbit anti-ORF3 sera as the primary antibodies.
Recombinant vector expressing PCV2 ORF2 (pORF2) was constructed
and confirmed previously (Shen et al., 2008). Finally, the plasmids
pORF1, pORF3 and pORF2 were purified by endoFree plasmid Giga kit
columns (Qiagen, Valencia, CA) and used as DNA vaccines.

Experimental design and samples collection

All themice at 8weeks of agewere grouped randomly and injected
intramuscularly in the quadriceps with 100 μg of each plasmid in a
total of 100 μl PBS as summarized in Table 4. Mice received 3 doses of
vaccine at 2-week intervals. Mice given similar injections of 200 μg
pCI-neo (pCI) in 100 μl PBS were used as the DNA control. Five mice in
each group were euthanized for flow cytometric analysis (FCM) and
lymphocyte proliferation assay (LPA) at 8 weeks p.i. At 16 weeks p.i.,
five mice of each group were challenged intraperitoneally with 0.2 ml
of PCV2 inoculum (104.75 TCID50/0.1 ml). Clinical observations were
recorded daily for 6 weeks and then all mice were euthanized and
spleens were collected for pathological analysis. Serum samples were
withdrawn from the retro-orbital sinus biweekly for antibody
detection and/or viremia evaluation.

Lymphocyte proliferation assay (LPA)

Cap-specific lymphoproliferative response of the splenocytes
from the immunized mice was determined by MTT test as described
previously (Zhou et al., 2005b). In brief, spleens were aseptically
removed from the mice at 8 weeks p.i. to make single-cell
suspensions (4×106 cells/ml) in RPMI 1640 containing 5% FBS
(RPMI1640-FBS), and applied to each well of 96-well culture plates
at 100 μl/well. Wells containing no cells were used as blank controls.
The PCV2 Cap protein diluted in RPMI1640-FBS was then added at a
final concentration of 1 μg/ml (100 μl/well) to stimulate the
splenocytes. Cells were cultured at 37 °C in 5% CO2 for 48 h. Twenty
μl of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide
(MTT, Sigma, St. Louis, MO) (5 mg/ml) was added to each well and
incubated for 4 h. The cells were then lysed by adding 100 μl of lysis
buffer (10% SDS, 0.01 mol/L HCl) to each well. After 20 h of
Antibody detectiona Protection assaya

re ELISA and VNT were performed
at 2-wk intervals

Mice were challenged at 16 wk p.i.,
pathology and viremia were evaluated
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incubation, optical density (OD) value of each well was measured at
570 nm. The LPA was performed in duplicate and stimulation index
(SI) was calculated from the formula: SI=(ODvaccine−ODblank)/
(ODDNA control−ODblank).

Flow cytometric analysis (FCM)

The above Cap-stimulated and cultured splenocytes were resus-
pended in 50 μl PBS (106 cells) and incubated with 50 μl diluted
(1:200) FITC-conjugated anti-mouse CD4 (L3T4) and R-PE-conjugat-
ed anti-mouse CD8α (Ly-2) monoclonal antibodies (BD Biosciences,
Mountain View, CA) at a concentration of 0.5 μg/million cells on an ice
bath. After 20 min incubation, cells were washed and analyzed on a
BDLSR cytofluorimeter using the CellQuest software (BD Biosciences).

ELISA

Titers of total IgG, IgG1 and IgG2a antibodies against PCV2 Rep, Cap
and ORF3 proteins were determined by indirect ELISA. Ninety-six-
well plates (Nunc, Roskilde, Denmark) were coated with 100 μl
corresponding protein (1 μg/ml for Rep and Cap; 2 μg/ml for ORF3) in
0.05 M Tris–HCl buffer (pH8.5) and left at 4 °C overnight. Next,
blocked with PBS containing 5% skimmed dry milk, 100 μl of the
serially 2-fold diluted mouse serum samples (lowest dilution, 1:64)
were added and incubated at 37 °C for 60 min. The bound antibodies
were detected by horseradish peroxidase (HRP)-conjugated goat anti-
mouse IgG, IgG1, or IgG2a antibodies (dilution, 1:6000; Southern
Biotechnology Associates). Tetramethylbenzidine (Sigma) was used
as a chromogen for color development, and absorbance wasmeasured
at 450 nm. Antibody titers were defined as the reciprocal of the
highest dilution of sample for which the ODwas at least 2 times that of
the control serum sample run on the same plate. The data were
presented as the log2 of the titer.

Virus neutralization test

Virus neutralization tests (VNT) were performed using serum
samples that were previously heat inactivated at 56 °C for 30 min.
Briefly, an equal volume of 105.0 TCID50/0.1 ml PCV2 HZ0201 and the
serial 2-fold dilutions (1:20 to 1:20,480) of the sera were mixed and
incubated at 37 °C for 1 h. The serum–virus mixture was inoculated
into 96-well microtitre plates containing semi-confluent monolayers
of PCV free PK-15 cells in 10 μl per well at a ratio of 1:10, using 2 wells
per serum dilution. The plate was incubated for 48 h at 37 °C. Finally,
the 96-well plates were screened by indirect immunofluorescence
assay (Zhou et al., 2006). The serum titers were determined as the
reciprocal of the highest serum dilution at ≥70% fluorescent focus
reduction in the infected cell cultures under a fluorescent microscope.

Pathology and viremia evaluations

At 6 weeks p.c., pathological analysis and viremia evaluation were
performed as previously described (Shen et al., 2008). Lesion severity
was estimated as the frequency of abnormal spleen follicles based on
the ratio between the number of the follicles demonstrating lymphoid
depletion and histiocytic infiltration by the total follicles counted in
each sample of spleen. A quantitative real-time PCR method was used
for assessing viremia. PCV2 genomic copies per ml of serum were
represented as the mean value of duplicate reactions.

Statistical analysis

Data statistical analysis was performed by one-way analysis of
variance (ANOVA) using the SPSS software program version 12.0.
Results were considered to be statistically significant when the P
value was less than 0.05.
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