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1. Introduction

Salmonella is a gram-negative bacterium that belongs to the Enterobacteriaceae family [1]. Salmonella
spp. are the most important bacterial pathogens among other foodborne pathogens and are responsible
for causing gastroenteritis in humans [2]. Salmonella enterica subsp. enterica includes more than 2600
serotypes and are capable of infecting animals and humans [3,4]. Infections caused by Salmonella
spp. in farm animals has been documented as the leading cause of considerable economic losses
worldwide [5,6].

Nontyphoidal Salmonella enterica subsp. enterica are responsible for causing significant numbers
of food-borne diseases in many countries [1,3,7]. Salmonella enterica serovar Rissen (S. Rissen) is one of
the major Salmonella serovars generally found in swine and swine products, chicken meat, and humans
with gastrointestinal diseases in different countries [8,9]. The European Food Safety Authority (EFSA)
and European Centre for Disease Prevention and Control (ECDC) reported S. Rissen as one of the top
twenty most common Salmonella serovars linked with human infections [7].

The worldwide increase of foodborne infections linked with antimicrobial-resistant pathogenic
microorganisms and the dissemination of antimicrobial resistance (AR) is one of key concerns in
developing and developed countries [10,11]. On the other hand, another concern for human health
in different countries is the emergence of multi-antimicrobial-resistant Salmonella strains and the
continuous spread of those clones [4,12–14]. Salmonella spp. are responsible for causing key financial
losses in the health care system as well as in the food industries [3].

Incidents of multidrug resistance in Salmonella spp., including other bacterial pathogens causing
enteric diseases, has been reported in many continents and became a major health issue as this
can spread internationally [15–17]. The food chain constitutes one of the most important mediums
for spreading of antimicrobial resistance [18]. The farm animals are the potential pool of bacterial
pathogens harboring multidrug resistance. The utilization of antimicrobials in agriculture for growth
promotion of animals and for the treatment of the diseases caused by bacterial pathogens can lead to
select antimicrobial-resistant pathogens [3,6]. In different studies, both pig and chicken meats have
been documented as the reservoir for drug-resistant Salmonella spp. [1,8]. This spread of drug resistance
through the food chain is considered as a major public health concern [19,20]. Therefore, an improved
surveillance of multidrug resistance and resistance determinants in Salmonella is crucial for providing
data on the magni tude and spectrum of AR in foodborne pathogens affecting humans and animals in
different countries.

Increased AR has been reported in many serovars of Salmonella spp. globally [6,21]. However,
very limited information on the occurrence of antibiotic resistance of Salmonella Rissen is available
in China and elsewhere [22]. The objective of the present study was to determine the antimicrobial
resistance patterns and properties of 311 Salmonella Rissen isolates obtained from humans, animals,
animal-derived food products, and the environment from 15 provinces or province-level cities between
2016 and 2019 in China. We also conducted whole genomic sequencing (WGS) to investigate the
antimicrobial resistance determinants among the selected MDR isolates.

2. Materials and Methods

2.1. The Source of Salmonella Isolates

The Chinese local surveillance system, including over 20 provinces or municipal cities’ CDCs in
China, was led by the Shanghai CDC. The overall database has over 50,000 Salmonella clinical isolates
collected since 2006, when Shanghai CDC joined the Global Foodborne Infections Network under
the World Health Organization. During the past decades, in line with local CDCs in mainland China,
Shanghai CDC gradually expand to collect Salmonella isolates all over China, including samples from
humans, animals, food and the environment. The Salmonella Rissen isolates and their corresponding
metadata were obtained from the Chinese local surveillance system. We selected 311 S. Rissen isolates
obtained during 2016 to 2019 for this investigation, due to the following reasons: (1) these isolates
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represent the most recent isolates in the past four years at the time of preparation the manuscript;
(2) these isolates were selected to capture the largest regions of mainland China.

2.2. Identification of Salmonella Isolates

The isolation of the microorganism was performed based on the protocol suggested by the World
Organization for Animal Health Terrestrial Manual [23]. According to this recommendation, isolation
of the microorganism was done on xylose lysine deoxycholate agar (XLD agar) plates. Briefly, 25 g of
bacterial sample was pre-enriched in buffered peptone water (BPW) at 37 ◦C overnight. The enriched
samples were then inoculated on modified semi-solid Rappaport–Vassiliadis (MSRV) and incubated at
42 ◦C for 24 h. A loopful of the positive growth taken from the MRSV colony was further inoculated on
to xylose lysine deoxycholate (XLD) and was kept in an incubator for overnight. Among the suspected
colonies, one colony was seeded in Luria–Bertani (LB) for DNA extraction and validated by polymerase
chain reaction (PCR). Distinctive round red colonies with black centers on xylose lysine deoxycholate
media were considered as probable Salmonella colonies.

2.3. DNA Extraction by Boiling Method and PCR

DNA extraction was done by boiling method. A 1 mL bacterial sample was transferred to a 1.5 mL
microcentrifuge tube. The cell suspension was centrifuged for 10 min at 14,000× g and the supernatant
was discarded. The pellet was resuspended in 300 µL of DNase-RNase-free distilled water by vortexing.
The tube was centrifuged at 14,000× g for 5 min, and the supernatant was discarded carefully. The pellet
was resuspended in 200 µL of DNase-RNase-free distilled water by vortexing. The microcentrifuge
tube was incubated for 15 min at 100 ◦C and immediately chilled on ice. The tube was centrifuged for
5 min at 14,000× g at 4 ◦C. The supernatant was carefully transferred to a new microcentrifuge tube
and incubated again for 10 min at 100 ◦C and chilled immediately on ice. An aliquot of 5 µL of the
supernatant was used as the template DNA in the PCR reaction.

2.4. PCR Amplification of stn Gene

PCR for stn gene, for enterotoxin, was performed to confirm Salmonella spp. as recommended
previously [24]. Extracted DNA was amplified by PCR using gene specific primers for
stn forward primer (F1) 5′-TTGTGTCGCTATCACTGGCAACC-3′ and reverse primer (R1)
5′-ATTCGTAACCCGCTCTCGTCC-3′. The PCR protocol for amplification was as follows: initial
denaturation at 94 ◦C for 10 min followed by 35 cycles, (i) denaturation at 94 ◦C for 45 s; (ii) primer
annealing at 58 ◦C for 45 s, and (iii) primer extension at 72 ◦C for 45 s followed by final extension at
72 ◦C for 7 min.

2.5. Serotyping by Agglutination Assay

We characterized O and H antigens by agglutination with hyperimmune sera and the serotype of
Salmonella spp. was identified as per the Kauffmann–White scheme [25].

2.6. Antimicrobial Susceptibility Test

Susceptibility to different antimicrobials of all selected isolates was performed as minimum
inhibitory concentration (MIC) determinations using a broth microdilution method according to
the guidelines of the Clinical and Laboratory Standards Institute (CLSI) [CLSI, 2016]. The broth
microdilution method was performed using Muller–Hinton broth and Muller–Hinton agar. In total,
14 clinically relevant antimicrobials from different classes were used to obtain the MIC values.
The antimicrobial classes and the MIC range (mg/L) used in this susceptibility assay were penicillin
(ampicillin, AMP, 0.125–128), beta-lactams (amoxicillin-clavulanic acid, AMC, 0.5/0.25–64/32), cephems
(ceftriaxone, CRO, 0.06–64; cefoxitin, FOX, 0.125–128; ceftiofur, TIO 0.06–64), aminoglycosides
(gentamicin, GEN, 0.125–128; streptomycin, STR, 0.125–128), tetracyclines (tetracycline, TET,
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0.125–128), quinolones (ciprofloxacin, CIP, 0.03–32; nalidixic acid, NAL, 0.125–128), sulfonamides
(trimethoprim/sulfamethoxazole, COT, 0.12/2.38–4/76; sulfisoxazole, FIS, 8–1024), macrolides
(azithromycin, AZI, 0.125–128), and phenicols (chloramphenicol, CHL, 0.125–128). The MIC
values of the antibiotics used were recorded for all bacterial isolates and compared to the
CLSI breakpoints (for ampicillin, amoxicillin–clavulanic acid, ceftriaxone, cefoxitin, gentamicin,
streptomycin, tetracycline, ciprofloxacin, nalidixic acid, trimethoprim/sulfamethoxazole, azithromycin,
and chloramphenicol) and the breakpoint recommendations from the National Antimicrobial Resistance
Monitoring System (NARMS) (for ceftiofur, sulfisoxazole). Salmonella Rissen isolates that showed
resistant to more than three classes of antimicrobial agents were defined as multidrug-resistant
(MDR) isolates.

2.7. Genomic Sequencing and Bioinformatic Analysis

http://www.github.com/tseemann/mlst
http://www.github.com/tseemann/abricate
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correlates well with other studies and could be linked with the findings that the antimicrobials were 
commonly used in swine farms in China [42,43]. Tetracycline is one of the most commonly used 
antimicrobial agents in humans, as well as in veterinary medicine, and is also one of the most 
extensively used drugs in animal husbandry in China and many other nations. Previous studies from 
different countries reported a high prevalence of tetracycline resistance in Salmonella Rissen 
[33,44,45]. High resistance to tetracycline could be explained by its extensive use to feed animals and 
this result was in accordance with other previous studies [46,47].  

Figure 1. The origin and geographic dynamics of 311 Salmonella Rissen isolates examined in this
study. (A) Prevalence of 311 S. Rissen isolates according to the sample sources used in this study.
The different sample sources included humans, animals, animal-derived foods, and the environment.
(B) Prevalence, geographical distribution, and different sources of 311 S. Rissen isolates obtained from
different provinces or province-level cities in China.

We found most of the S. Rissen isolates from humans were from Guangxi and Shanghai in China
(Figure 1B). In a major Salmonella outbreak in the US in 2009, more than 80 people were infected by
S. Rissen pathogens over four different states of the country [32]. Previous reports demonstrated a
number of cases of human infections caused by S. Rissen in Demark, Ireland, and UK [33,34]. The risk of
salmonellosis in humans as well as the increase of MDR Salmonella clones highlights the importance of
the surveillance of rising S. Rissen pathogens. It has been found that about 95% of human salmonellosis
is linked with the eating of undercooked or contaminated swine meat [35–38]. Salmonella could affect
humans at any stages of the food production chain [39,40]. A recent study [41] demonstrated that the
Salmonella contamination in animal-derived foods in Guangdong Province in China is very severe,
posing significant risk for human infections. Considering the sporadic cases of Salmonella Rissen
in humans, this study could shed light on the characterization of antibiotic susceptibility profile of
S. Rissen isolates in humans, causing diarrhea and bacteremia, with the largest number of isolates
included to date. This is of clinical significance and could guide regional risk assessments for future
outbreaks in China.

3.2. S. Rissen Showed Resistant Properties Against Important Antimicrobials

We found most of the S. Rissen isolates showed resistance to tetracycline, streptomycin,
trimethoprim-sulfamethoxazole, chloramphenicol, sulfisoxazole, and ampicillin (Figure 2) which
correlates well with other studies and could be linked with the findings that the antimicrobials
were commonly used in swine farms in China [42,43]. Tetracycline is one of the most commonly
used antimicrobial agents in humans, as well as in veterinary medicine, and is also one of the most
extensively used drugs in animal husbandry in China and many other nations. Previous studies from
different countries reported a high prevalence of tetracycline resistance in Salmonella Rissen [33,44,45].
High resistance to tetracycline could be explained by its extensive use to feed animals and this result
was in accordance with other previous studies [46,47].
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from Thailand were resistant to many antibiotics such as tetracycline, ampicillin, streptomycin, 
sulfisoxazole, and chloramphenicol [52]. Emerging resistance of S. Rissen isolates to clinically 
relevant antimicrobials are an important public health issue. 
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(Figure 3A). MDR is defined as resistance to three or more different classes of antibiotics. MDR S. 
Rissen isolates were obtained from all sources such as humans, food products, animals, and 
environments (Figure 3B). S. Rissen demonstrating multi-antimicrobial resistance has been recorded 
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Figure 2. The heatmap of antimicrobial resistance profile for S. Rissen isolates according to sample
sources based on minimum inhibitory concentration (MIC) values. The 14 antimicrobials used in
this study were as follows: ampicillin (AMP), amoxicillin–clavulanic acid (AMC), ceftriaxone (CRO),
cefoxitin (FOX), ceftiofur (TIO), gentamicin (GEN), streptomycin (STR), tetracycline (TET), ciprofloxacin
(CIP), nalidixic acid (NAL), trimethoprim/sulfamethoxazole (COT), sulfisoxazole (FIS), azithromycin
(AZI), and chloramphenicol (CHL). Each cell refers to the percentage of antimicrobial-resistant bacterial
isolates recovered from different sample sources with a particular antimicrobial agent, from low (green)
to high (red).

Previous reports described that Salmonella isolates displayed resistance against important
antibiotics such as tetracycline, streptomycin, ampicillin, chloramphenicol, amoxicillin, neomycin,
and sulfonamide [48,49]. Another report [50] demonstrated the widespread occurrence of antibiotic
resistance to ampicillin, streptomycin, tetracycline, sulfonamide, and chloramphenicol found in
S. Rissen isolates from swine farms in upper northern Thailand. Among the S. Rissen isolates obtained
from pigs in Europe, tetracycline was found to be the most common resistance phenotype [44,49].
A recent study [46] reported that 85.7% of the S. Rissen isolates from swine demonstrated resistance to
tetracycline in Shandong Province, China. Garcia-Feliz et al. [51] reported 50% of the S. Rissen isolates,
originating from pigs, were resistant to tetracycline alone. In another study, S. Rissen isolates from
Thailand were resistant to many antibiotics such as tetracycline, ampicillin, streptomycin, sulfisoxazole,
and chloramphenicol [52]. Emerging resistance of S. Rissen isolates to clinically relevant antimicrobials
are an important public health issue.

3.3. High Prevalence of MDR S. Rissen Isolates

In total, 92% of the S. Rissen isolates were found to be multidrug-resistant (MDR) in our study
(Figure 3A). MDR is defined as resistance to three or more different classes of antibiotics. MDR S. Rissen
isolates were obtained from all sources such as humans, food products, animals, and environments
(Figure 3B). S. Rissen demonstrating multi-antimicrobial resistance has been recorded in Spain
previously, and S. Rissen isolates showed MDR properties against four to nine different important
drugs [51]. Studies by Tadee et al. [53] in Thailand reported that S. Rissen isolates demonstrated
resistance against more than three drugs. Previously, Garcıa-Fierro et al. [54] described that 19% of
the S. Rissen isolates were multidrug-resistant; the isolates were mostly (74%) resistant to tetracycline
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drug and also demonstrated significant percentages of resistance against ampicillin, streptomycin,
sulfonamides, and chloramphenicol, which supports our findings here.
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one type of antimicrobial class.

The high incidence of MDR Salmonella Rissen in China found in this study is a serious public
health concern. The emergence and dissemination of MDR Salmonella are frequently associated with
the acquisition of bacterial mobile genetic elements (MGEs) [16,55]. The high occurrence of antibiotic
resistance found in this study demonstrated the harmful impact of the unrestricted use of such
antibiotics for growth enhancement, as well as in medicine, in China.

3.4. Genomic Characterization of an Extensively Drug Resistant Salmonella Rissen

Table 1 described the results of genomic analysis of S. Rissen isolates with different antimicrobial
resistance genes found in the isolates, which could confer high level of antimicrobial resistance.
Genomic analysis of tetracycline-resistant S. Rissen isolates showed the presence of tet (A) resistance
genes responsible for tetracycline resistance. Resistance to tetracycline antimicrobials is controlled by
tet genes and these genes are generally involved in active efflux of the antimicrobials, as well as in
ribosomal protection and enzymatic modification. Among several tet genes responsible for tetracycline
resistance in Salmonella, tet genes belong to classes A, B, C, D, and G were found most frequent types of
genes [56,57]. blaTEM-1B resistance genes were found in ampicillin-resistant S. Rissen isolates in this
study. The dominant bla gene conferring ampicillin resistance in most of the Salmonella serovars was
found to be different types of blaTEM [58–60]. Different aminoglycoside resistance genes such as aadA2,
aadA1, aac(6’)-Iaa, and aph(3”)-lld were found here and are demonstrated in Table 1. Among different
mechanisms of aminoglycoside resistance, enzymatic modification is the most prevalent in pathogenic
bacteria, including Salmonella spp. [4,61]. Through genome analysis, we found the sul3 antibiotic
resistance gene in sulfaxisazole-resistant Rissen isolates. This same resistance gene sul3 was also found
in trimethoprim-sulfamethoxazole-resistant isolates. Another important gene dfrA12 was found in
trimethoprim–sulfamethoxazole-resistant S. Rissen isolates in our genomic study (Table 1). It has
been found in many studies that resistance to sulfonamide antimicrobials is primarily mediated
by the sul1, sul2, and sul3genes [62,63]. The major mechanism of trimethoprim resistance is the
existence of integron-borne dihydrofolate reductases. The dfrA12 gene was among the different genes
encoding dihydrofolate reductases reported in Salmonella previously [64–67]. The presence of different
antimicrobial resistance genes in S. Rissen isolates mainly obtained from human demonstrates their
MDR properties.
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Table 1. Antimicrobial susceptibility and whole genome analysis of MDR S. Rissen strains obtained in this study.

Antibiotic Classes SAL02425 SAL02454 SAL02475 SAL02482 SAL02490 SAL02560 SAL02592 SAL02603

MIC
(mg/L) Related Genes MIC

(mg/L) Related Genes MIC
(mg/L) Related Genes MIC

(mg/L) Related Genes MIC
(mg/L) Related Genes MIC

(mg/L) Related Genes MIC
(mg/L) Related Genes MIC

(mg/L) Related Genes

Antimicrobial
Susceptibility

testing

β-Lactam and
β-Lactams inhibitor

AMP >32 blaTEM-1B
blaCTX-M-14

>32 blaTEM-1B
blaCTX-M-14

>32
blaCTX-M-14

>32 blaTEM-1B
blaCTX-M-27

>32 blaTEM-1B
blaCTX-M-55

16 32 blaTEM-1B
32 blaTEM-1BAMC >32/16 >32/16 >32/16 >32/16 >32/16 8/4 >32/16 >32/16

Amino-glycoside STR 32 aadA2, aadA1,
aac(6′)-Iaa, aph(3”)-lld

64 aadA2, aadA1,
aac(6′)-Iaa

64 aadA2,
aac(6′)-Iaa

>64 aadA2, aadA1,
aac(6′)-Iaa

>64 aadA2, aadA1,
aac(6′)-Iaa, ant(3”)-Ia

>64 aadA2,
aac(6′)-Iaa

>64 aadA2, aadA1,
aac(6′)-Iaa, ant(3”)-Ia

>64 aadA2, aadA1,
aac(6′)-IaaGEN >16 >16 2 2 2 1 2 2

Macrolides AZI 8 8 8 8 8 4 8 8

Quinolone CIP 0.03 0.03 0.03 0.03 0.06 0.06 0.06 0.06
NAL 4 4 4 4 4 8 4 4

Phenicol CHL 8 8 8 8 32 CmlA2 32 CmlA2 32 CmlA2 32 CmlA2

Sulfaxisazole FIS >256 sul3 >256 sul3 1 >256 sul3 >256 sul3 1 >256 sul3 >256 sul3

Trimethoprim/
Sulphonamide COT >32/608 dfrA12, sul3 >32/608 dfrA12, sul3 >32/608 dfrA12 >32/608 dfrA12, sul3 >32/608 dfrA12, sul3 >32/608 dfrA12 >32/608 dfrA12, sul3 >32/608 dfrA12, sul3

Tetra-cyclines TET >32 tet(A) >32 tet(A) >32 tet(A) >32 tet(A) >32 tet(A) >32 tet(A) >32 tet(A) >32 tet(A)

Cephalo-sporines
CRO >64

blaTEM-1B
blaCTX-M-14

>64
blaTEM-1B

blaCTX-M-14

32
blaCTX-M-14

>64
blaTEM-1B

blaCTX-M-27

>64
blaTEM-1B

blaCTX-M-55

2 4
blaTEM-1B

4
blaTEM-1BTIO >8 >8 >8 >8 >8 1 >8 >8

FOX 8 16 16 16 16 1 32 32

Host Human Human Human Human Human Live Swine Chicken meat Pork

Collection place Fujian Shanghai Fujian Chongqing Chongqing Jiangsu Guangdong Guangxi

Sequence type ST469 ST469 ST469 ST469 ST469 ST469 ST469 ST469
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3.5. S. Rissen from Animal and Animal Products with Antimicrobial Resistance

We found 17% of S. Rissen isolates came from swine and swine products, 5% of isolates were from
chicken, 1% were seafood isolates, and 3% of isolates were from the environment in this study. Pigs are
often nonsyndromic carriers of different Salmonella serovars [68] and previous studies have shown that
swine products could be easily contaminated by Salmonella spp. [21,53]. We found S. Rissen isolates
from animals and animal-originated food products showed resistance against different clinically
relevant antibiotics (Figure 2). The dissemination of drug resistance by animal meat products poses a
serious public health concern. Previous studies confirmed swine production units in Spain as a main
reservoir of S. Rissen [49,51]. Hendriksen et al. [33] previously reported that 80% of the S. Rissen isolates
examined in Denmark were associated with swine products and showed resistance to tetracycline.
The study also reported a similar kind of antimicrobial resistance pattern for undercooked as well as
and ready-to-eat (RTE) food products found in Thailand. In another research work in South Korea,
Salmonella Rissen was among the major serovars found in healthy as well as diarrhoeal swine, including
a high incidence of resistance to tetracycline, streptomycin, and sulfamethoxazole [9]. Some literatures
have reported that S. Rissen isolates have also been obtained from other food-producing animals,
as well as animal-originated food products, such as poultry and beef, and from human clinical samples,
though sometimes with less frequency than other Salmonella serovars [45,69–71]. This shows the rising
of a successful S. Rissen clone that can have an effect globally by transmitting to different countries.
A very recent study [11] found high levels of resistance among S. Rissen isolates recovered from a pig
production chain in Thailand and the isolates showed a very high percentage of resistance to ampicillin,
tetracycline, and trimethoprim–sulfamethoxazole, and nearly 80% of the bacterial isolates showed
a MDR pattern. In another study in the northeastern part of Thailand and Laos, S. Rissen isolates
showed high frequency of resistance to ampicillin, tetracycline, sulfonamides, and trimethoprim in
a swine production unit [72]. These reports showed the significance of stringent monitoring and
maintaining of a clean environment in the pork production system. We found very few (3%) S. Rissen
isolates from the environment and it is interesting to note that sometimes Salmonella can survive in the
environment for a long time [73,74]. Routine surveillance of pig and poultry farms for Salmonella and
rapid intervention will significantly improve global food safety and security.

3.6. Antimicrobial Susceptibility Pattern of the S. Rissen Isolates

The S. Rissen isolates showed susceptibility or low-level resistance against ceftriaxone, ceftiofur,
gentamicin, nalidixic acid, ciprofloxacin, and azithromycin (Figure 2). Antibiotic classes, such as
fluoroquinolones and beta-lactams, are commonly used in hospitals to treat infections caused by
Salmonella spp. Quinolones or fluoroquinolones are broad-spectrum antibacterial agents and are used
as an important drug of choice for the treatment of the invasive infections in humans and widely used
in veterinary medicine. Fluoroquinolone compounds exert their effects by inhibition of some bacterial
topoisomerase enzymes, such as DNA gyrase and topoisomerase IV. A small region of gyrA was
identified as “quinolone resistance-determining region”, or QRDR, and changes in this QRDR region
were found in bacterial pathogens with resistance to fluoroquinolones [75]. Beta-lactam antibiotics,
which include the cephalosporins class, interfere with the cell wall synthesis by inhibiting the bacterial
enzymes. One of the major causes of beta-lactam resistance is by antibiotic-inactivating enzymes
known as beta-lactamases [75].

In accordance with our data, some reports in Thailand also demonstrated low-level resistance or
susceptibility to ciprofloxacin, ceftriaxone, and ceftiofur. This could be possible because of the restricted
use of these antimicrobial agents in the animal-derived food production systems [76–78]. Quinolones
and third-generation cephalosporins are the antimicrobials most extensively used to treat both human
and animal infections. Finding susceptibility to third generation cephalosporins is important, as this
group of antibiotics is frequently used against highly invasive bacterial infections.
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3.7. ASSuT (Ampicillin, Streptomycin, Sulphonamide, and Tetracycline), and ACSSuT (Ampicillin,
Chloramphenicol, Streptomycin, Sulphonamide, and Tetracycline) Pattern of Antimicrobial Resistance

For nontyphoidal Salmonella or NTS, resistance to five antibiotics, ampicillin, chloramphenicol,
streptomycin, sulphonamide, and tetracycline (ACSSuT), is an important resistance pattern.
Another important pattern of resistance, ASSuT (ampicillin, streptomycin, sulphonamide,
and tetracycline), has also emerged for Salmonella species and other foodborne pathogens. S. Rissen
isolates in this study showed different antibiotic resistance patterns. The occurrence of clinically relevant
tetra- or penta-drug resistance patterns such as ASSuT (27%), and ACSSuT (22%) were high, respectively.
ACT (ampicillin, chloramphenicol, and tetracycline) (25%), ACSSuTAmc (11%), and ACSSuTFox
(7%), were among the other prevalent antibiotic resistance patterns found in this study (Figure 4).
ACT (ampicillin, chloramphenicol, and tetracycline), ACSSuTAmc (ampicillin, chloramphenicol,
streptomycin, sulfonamides, tetracycline, and amoxicillin-clavulanic acid), and ACSSuTFox (ampicillin,
chloramphenicol, streptomycin, sulfonamides, tetracycline, and cefoxitin) antibiotic resistance patterns
in S. Rissen isolates were mainly obtained from humans and animal-derived foods (Figure 4). Some of
these important antimicrobial resistance patterns were also reported in our recent study on Salmonella
Typhimurium [21]. Figure 4A, with the pie chart, shows the percentage of different antimicrobial
resistance patterns of all 311 S. Rissen isolates obtained from different sources in China. Figure 4B,C
shows different antimicrobial resistance patterns of all 311 S. Rissen isolates according to different
sample sources.
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4. Conclusions and Future Perspectives

As a retrospective epidemiological investigation, our study described a high incidence of
antimicrobial resistance among Salmonella Rissen isolates recovered from diverse sources, especially
from humans in China. Our results provide the first outline of rising drug resistance among S. enterica
serovar Rissen, causing humans salmonellosis in China, which is relevant for both food safety and public
health. The results we obtained here are more representative of China and could be useful for potential
risk evaluation in the future. These findings could signify the possible risk of antimicrobial-resistant
Salmonella infections in certain provinces or province-level cities in China. Therefore, there must be
continuous epidemiological investigations on infections caused by Salmonella spp. in humans and
animals and more studies are needed to advance our understanding about the development and
dissemination of MDR strains. Pigs and swine products are one of the key reservoirs of Salmonella
Rissen and there is a possibility that enhanced multiple antimicrobial resistance in S. Rissen will result
in a rising number of human cases. Therefore, further whole genomic sequencing investigations could



Antibiotics 2020, 9, 660 11 of 15

aim to resolve the genetic diversity in the S. Rissen population, as well as the antimicrobial resistance
genetic makeup in certain critical antibiotic resistant S. Rissen isolates and the potential mechanism
for their dissemination. Finding susceptibility to quinolones and third-generation cephalosporins is
important and the data presented by this study could be used to recommend suitable therapeutic
agents against Salmonella Rissen infections in China. Food safety should be improved and uncontrolled
use of antimicrobials in growing food-producing animals must be closely monitored to ensure the
public health safety.
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