Asian-Australas J Anim Sci Vol. 30, No. 3:386-391 March 2017 https://doi.org/10.5713/ajas.16.0214 pISSN 1011-2367 eISSN 1976-5517

Effects of dietary protein level on growth performance and nitrogen excretion of dairy heifers

Bin Zhang^{1,a}, Chong Wang^{2,a}, He Liu¹, Jianxin Liu¹, and Hongyun Liu^{1,*}

* Corresponding Author: Hongyun Liu Tel: +86-571-88982965, Fax: +86-571-88982930, E-mail: hyliu@zju.edu.cn

¹ Institute of Dairy Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
² College of Animal Science and Technology, Zhejiang

A&F University, Hangzhou 311300, China

^a These two authors contribute equally to this work. Submitted Mar 15, 2016; Revised Jun 13, 2016; Accepted Aug 14, 2016

INTRODUCTION

Copyright © 2017 by Asian-Australasian Journal of Animal Sciences

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

0.1	0.42% 0.26% 6 .	8	10
			-
	16.5%-16.7% 18.5%-19.4% 34 38 . 13.1% 14.8% 7,8 .		,
			,
,	(A), , 9 11		- ,

۸

MATERIAL AND METHODS

A i a a de e i e a die

А	
(13.5%) (70% 30%	
() .
, , , , , .	() -
(/ 34-2004,	250
350 , A 800 1,000) 9 . ()	
	(250 350
, A 800 1,000) 4.	()
3 . A	-
	3
0630, 1400, 2030	
10 8	. 2014.
Mea e e adaaica ehd	
	- () 2.50%

				()	2.50%
. 55	48,			1-		,
	,		(), ,	10,		
,			11.	,		,
,						
			4			
		(5)			

Table 1. Composition of diets with low, medium, and high protein

	Dietary treatment ¹⁾				
-	Low	Medium	High		
Ingredient, % of DM					
Chinese wild rye	40.7	40.7	40.8		
Corn silage	27.1	27.2	27.2		
Corn	16.0	12.8	10.6		
Barley	3.2	2.6	0.0		
Rapeseed meal	3.3	3.3	3.3		
Soybean meal	3.2	6.4	9.6		
DDGS (corn)	4.1	4.7	6.3		
Mineral-vitamin premix ²⁾	2.3	2.3	2.4		
Chemical composition (DM basis)					
CP (%)	10.2	11.9	13.5		
RUP ³⁾ (% of CP)	32.3	32.3	32.7		
MP ⁴⁾ (%)	8.64	9.10	9.58		
NDF (%)	59.4	58.6	61.8		
ADF (%)	29.0	29.1	28.4		
Ca (%)	0.79	0.80	0.81		
P (%)	0.22	0.22	0.24		
Ash (%)	6.45	6.59	6.95		
ME ^{₅)} (Mcal/kg)	2.47	2.47	2.48		

DM, dry matter; DDGS, distillers dried grains with solubles; CP, crude protein; RUP, rumen undegraded protein; MP, metabolizable protein; NDF, neutral detergent fiber; ADF, acid detergent fiber; ME, metabolizable energy.

¹⁾ Low, low level of dietary CP; Medium, medium level of dietary CP; High, high level of dietary CP.

²⁾ Mineral-vitamin premix per kg containing: Ca 166 g; Fe 1,800 mg; Cu 630 mg; Mn 630 mg; Zn 2,940 mg; Se 21 mg; I 38 mg; Co 8 mg; Vitamin A 240,000 IU; Vitamin D 60,000 IU; Vitamin E 1,200 IU.

³⁾ RUP value was estimated to be 30.5%, 35.35%, 37.0%, 19.6%, 26.6%, 30.8%, 47.5% of CP for Chinese wild rye, corn silage, corn, barley, rapeseed meal, soybean meal, DDGS (NRC,2001 [4]; NY/T-34, 2004[9]).

⁴⁾ MP (%) = $0.64 \times$ microbial protein+ $0.8 \times$ RUP of CP(%) × CP(%), where microbial protein = $3.8 \times$ Mcal of ME/kg DM.

⁵⁾ The ME value was estimated to be 2.33, 2.21, 3.12, 3.10, 2.75, 3.31, 3.03 Mcal/ kg for Chinese wild rye, corn silage, corn, barley, rapeseed meal, soybean meal, DDGS (NRC,2001 [4]; NY/T-34, 2004[9]).

AJAS

Cacai adaiicaaa i

 $() = {}^{2}() () 87.5 14-16.$ () 20.0; ., A , , A).

RESULTS AND DISCUSSION

0.05

Feed i g edie, d a e i ake, c de ei i ake, a e age dai gai

Figure 1. Change in dry matter intake of heifers fed diets containing different dietary protein level. The average dry matter intake were 6.31, 6.31, 6.39 kg/d for low, medium, and high group, respectively.

Table 2. Initial age, body weight (BW), and average daily gain (ADG) of heifers fed different dietary protein level

Itom	Dietary treatment ¹⁾			SEM	p-value ²⁾		
Item –	Low	Medium	High	SEIVI	Т	L	Q
Initial age (d)	273.1	272.9	273.2	6.15	1.00	0.99	0.98
Initial calculated BW ³⁾ (kg)	240.7	227.5	239.4	11.6	0.46	0.91	0.22
Crude protein intake (g/d)	695.3°	795.1 ^b	942.8ª	14.3	< 0.01	< 0.01	0.18
ADG (g/d)	799.9 ^b	955.2ª	970.3ª	51.1	0.04	0.02	0.29

SEM, standard error of the mean.

¹⁾ Low, low level of dietary CP; Medium, medium level of dietary CP; High, high level of dietary CP.

 $^{2)}$ T, effect of treatment; L, linear effect; Q, quadratic effect. $^{3)}$ BW (kg) = heart girth² (m) × body length (m) × 87.5.

 a,b Superscripts that differ are significant at p < 0.05.

	Dietary treatment ¹⁾			CEM.	p-value ²⁾		
Item	Low	Medium	High	– SEM	Т	L	Q
рН	6.63	6.60	6.61	0.07	0.93	0.79	0.79
NH₃-N (mg/100 mL) Volatile fatty acid	1.16 ^b	2.28 ^{ab}	3.42ª	0.38	< 0.01	0.001	0.98
Acetate (mmol/L)	60.8	62.3	63.0	3.47	0.83	0.54	0.91
Propionate (mmol/L)	15.0	12.4	13.4	1.16	0.31	0.34	0.24
Butyate (mmol/L)	9.34	8.64	8.72	0.40	0.43	0.29	0.45

Table 5. Effect of different dietary protein level on rumen fermentation of heifers

SEM, standard error of the mean.

¹⁾ Low, low level of dietary CP; Medium, medium level of dietary CP; High, high level of dietary CP. ²⁾ T, effect of treatment; L, linear effect; Q, quadratic effect.

^{a,b} Superscripts that differ are significant at p < 0.05.

Table 6. Effect of dietary protein level on manure N excretion and retention of heifers

lton		Dietary treatment ¹⁾		CEM		p-value ²⁾	
ltem	Low	Medium	High	– SEM	Т	L	Q
Feces							
kg of DM/d	2.05	2.09	2.05	0.14	0.97	0.99	0.81
kg of wet manure/d	13.4	13.3	13.0	0.83	0.95	0.77	0.90
Urine							
kg/d	4.29	5.21	4.91	0.53	0.49	0.40	0.39
Total manure							
kg of wet/d	17.6	18.3	17.9	1.02	0.89	0.72	0.68
N intake (g/d)	111.3 ^c	127.2 ^b	150.8ª	2.29	< 0.01	< 0.01	0.18
Fecal N (g/d)	40.7	40.5	40.6	2.06	0.99	0.97	0.97
Urine N (g/d)	30.8 ^b	45.1ª	50.0ª	4.89	0.02	< 0.01	0.52
Urinary urea N (g/d)	11.0 ^b	15.1ªb	19.1°	2.23	0.05	0.02	0.97
N retention							
g/d	38.3	41.9	56.1	9.10	0.07	0.02	0.77
% of N intake	35.3	32.7	37.5	6.63	0.80	0.72	0.58

SEM, standard error of the mean; DM, dry matter.

¹⁾ Low, low level of dietary CP; Medium, medium level of dietary CP; High, high level of dietary CP. ²⁾ T, effect of treatment; L, linear effect; Q, quadratic effect.

0.9 / .

 a,b,c Superscripts that differ are significant at p < 0.05.

REFERENCES

1.			:	-
	; 2013.			

&

;

2. , , A . A . 2000;8: 147-53.

:

3. .

.

2.47

.

11

9

/

CONFLICT OF INTEREST

13 14

AJAS

2013. 4. 7 5.		, : , .	А	.; 2001.
				. A
	2014;5	5.23_8		
<i>(</i>				
6.	, ,	, .		
7.	. A -A A.	А	2016;29:	960-4.
				2003;86:
1370-8	1		•	2005,00.
8. '	,	А		
			2006;89:170	4-12
0	•	-34.	2000,09.170	12.
9.	1			•
		/	-34.	, :A
	; 2004.			
10. A A				AA -
	19 .	,	: A A	; 2012.
11.	,	,	A.	,
	-			
	1991;15:35	83-97.		
12.	, ,	, ,		
			201	2;95:5978-84.
13.	, , A			
10.	, , ,	in vitro. A		2005;120:
333-9.		<i>III VIII</i> 0. A		2005,120.
14.	А,	,	•	
	92;75:3576-81.			
15.	, ,	, .		
		2010;93	3:2060-6.	
16. ,	,	, ,		-
				. A
	2014;41:121	-5.		

17. A, , .

3 12 . 1987;70:1612-22. 18. , , , , .

8-10- - . A 2010;43:2441-547. 19. , A.

, , , . 2000;83:977-83. 20. , А.

. 2003;86:268-74. 21. , , , , , . : . A 2008;2:1393-404.

2008;2:1393-404. 22. , A , A . -180 . 1987;70:2385-93. 23. , .

: . A 1997;75:828-35.

24. , , , A.

. 2002; 85:1516-25. 25. , , , , . -, 8 10- - .

28. , A.

. 2008; 91:3579-88. 29. , A . . A 2003;81:545-52.