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Abstract Pectin is a non-fiber carbohydrate (NFC) that

exists in forages, but it is not clear how pectin exerts its

effect on populations of either known microbial species or

uncultured ruminal bacteria. PCR-denaturing gradient gel

electrophoresis (PCR-DGGE) and real-time PCR analysis

were used in the present study to investigate the effects of

pectin on microbial communities in an in vitro rumen

fermentation system. The fermentations were conducted

using forage (corn stover or alfalfa), an NFC source (pectin

or corn starch), or their combination as the substrates.

Addition of pectin increased acetate (P \ 0.05), whereas

inclusion of starch increased butyrate production

(P \ 0.05). The pectate lyase activity was higher with

alfalfa than with corn straw, or with pectin than with corn

starch (P \ 0.05), while the amylase activity was higher in

corn starch-included treatments than the others (P \ 0.05).

The cluster analysis of the bacterial 16S rRNA gene

showed that the DGGE banding patterns differed signifi-

cantly between the treatments and led to the identification

of three groups that were highly associated with the NFC

sources. The specific bands associated with pectin-rich

treatments were identified to be dominated by members of

the Treponema genus. The growth of the Treponema genus

was remarkably supported by the inclusion of pectin,

highlighting their specific ability to degrade pectin. The

results from the present study expand our knowledge of the

microbial populations associated with pectin digestion,

which may not only facilitate future research on utilization

of pectin in feeds, but also improve our understanding of

pectin digestion with respect to the rumen micro-

ecosystem.

Introduction

A shortage of available carbohydrates can primarily limit

the microbial activity and nitrogen utilization in the rumen

[33]. Zhu et al. [41] observed that dairy cows fed alfalfa

hay, as a primary forage source, exhibited a higher rumen

microbial protein yield than those fed corn stover, and this

difference was attributed to the higher non-fiber carbohy-

drate (NFC) content in alfalfa hay. The typical NFC con-

tent (% of dry matter) in alfalfa hay ranges from 23.2 to

31.5 %, corresponding primarily to a pectin content of

10.5–14.2 % [21], but total NFC in corn stover is only

5.3 % [22]. Both pectin and starch are the primary types of

NFCs that exist in feeds, but their digestion and fermen-

tation characteristics differ markedly [11] primarily due to

their specific effects on ruminal bacteria [20].

There appear to be limited studies that focused on the

effects of pectin on microbial populations. Through in vitro

fermentations with different carbohydrate sources (pectin

vs. starch), Poulsen et al. [26] found that the addition of

pectin resulted in a different microbial community com-

pared with that obtained with starch treatment, and these

differences may be attributed to a selective enhancement of

groups of pectin-utilizing bacteria. However, the exact

groups or species of pectin-utilizing bacteria remain
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unknown due to the limitations of the methodology (ter-

minal-restriction fragment length polymorphism analysis)

used by these researchers.

The technique of PCR-denaturing gradient gel electro-

phoresis (PCR-DGGE) followed by sequencing analysis is

widely used as a method to compare the ruminal bacterial

structures obtained with different diets and/or specific

groups of bacteria associated with a particular function in

the rumen [5, 13, 15]. Quantitative PCR has proven to be a



respective pure-cultured strains including P. ruminicola

ATCC19189, T. bryantii B25, Fibrobacter succinogenes

S85, Ruminococcus albus 8, and R. flavefaciens Y1.

Whereas the standard for Treponema group was obtained

by cloning the amplicon amplified from the genomic DNA

of T. bryantii B25 using Treponema group-specific prim-

ers, the standard for total bacteria was generated from the

amplicon amplified using the bacterial universal primers

(Table 1) with the genomic DNA of R. albus 8 as a tem-

plate. The respective plasmid DNA standard was prepared

according to Koike et al. [17].

The real-time PCR assays were performed using a 7500

Real-Time PCR System (Applied Biosystems, USA) with

the SYBR Premix Ex Taq (TaKaRa Bio, Dalian, China).

The PCR mixture solution contained 10 ll of 2 9 SYBR

Premix Ex Taq, 0.4 ll of 50 9 ROX Reference Dye, 10 ng

of the template DNA, and 0.2 lM of each primer in a total

volume of 20 ll. The amplification procedure consisted of

one cycle of 95 �C for 30 s for the initial denaturation and

40 cycles of 95 �C for 5 s and annealing/extension at 60 �C

for 34 s. A five-fold dilution series of the respective plas-

mid DNA standard was run with the samples, which were

run in triplicate. The amplification efficiencies and the

relative abundance of each target species were calculated

according to Liu et al. [18].

Statistical Analysis

The statistical analyses were performed using the SAS

software [27] with one-way ANOVA, and the mean sepa-

ration was conducted using Tukey’s studentized range test.

The level of significance was set to 0.05.

Results and Discussion

In Vitro Fermentation Parameters and Enzymes

Activities in the Fermentation Fluid

Fermentation of pectin by known pectinolytic bacteria

strains yielded acetate as major end products, whereas they

produced more butyrate, formate or lactate when they grow

on glucose [8, 19]. When comparing CSP with CSS or Pe

with St, addition of pectin significantly increased acetate

production (P \ 0.05), whereas inclusion of starch signif-

icantly increased butyrate production (P \ 0.05, Table 2).

Propionate production was not significantly different

between CSP and CSS or Pe and St (P [ 0.05). Our results

agree with those of Ariza et al. [2], who found pectin-rich

citrus pulp diet resulting in a greater acetate/propionate

ratio compared with starch-rich hominy feed diet under

continuous culture fermentation system. Marounek et al.

[20] also demonstrated that mixed cultures of rumen

microorganisms generated a metabolite profile that is high

in acetate and low in butyrate with pectin fermentation. Not

surprisingly, the AH had higher DMD than CS (P \ 0.05).

Incorporation of either pectin or starch with CS resulted in

higher DMD than CS alone (P \ 0.05), with no difference

between CSP and CSS (P [ 0.05). The pectin treatment

induced higher gas production in early time point than

starch, whereas after 24 h, total gas production was not

significantly different between CSP and CSS or Pe and St

(P [ 0.05, Supplementary Table S1).

The pectate lyase activity was significantly higher with

AH than with CS, or with Pe than with St (Table 2,

P \ 0.05). When CS was supplemented with pure pectin,

Table 1 Pure cultures and primers used in this study

Target Primer sequences Product

size

(bp)

PCR

efficiency

(%)

References

Total bacteria F CGGCAACGAGCGCAACCC 141 91 Denman and McSweeney [6]

R CCATTGTAGCACGTGTGTAGCC Denman and McSweeney [6]

Treponema group F GGCAGCAGCTAAGAATATTCC 575 88 Bekele et al. [3]

R CCGTCAATTCCTTTGAGTTT Watanabe et al. [34]

Treponema bryantii (B25) F AGTCGAGCGGTAAGATTG 421 97 Tajima et al. [32]

R CAAAGCGTTTCTCTCACT Tajima et al. [31]

Fibrobacter succinogenes (S85) F GTTCGGAATTACTGGGCGTAAA 121 96 Denman and McSweeney [6]

R CGCCTGCCCCTGAACTATC Denman and McSweeney [6]

Ruminococcus albus (8) F CCCTAAAAGCAGTCTTAGTTCG 176 93 Koike and Kobayashi [16]

R CCTCCTTGCGGTTAGAACA Koike and Kobayashi [16]

Ruminococcus flavefaciens (Y1) F CGAACGGAGATAATTTGAGTTTACTTAGG 132 92 Denman and McSweeney [6]

R CGGTCTCTGTATGTTATGAGGTATTACC Denman and McSweeney [6]

Prevotella ruminicola

(ATCC19189)

F GAAAGTCGGATTAATGCTCTATGTTG 74 99 Stevenson and Weimer [29]

R CATCCTATAGCGGTAAACCTTTGG Stevenson and Weimer [29]

The culture stains used are indicated in brackets
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pectate lyase activity increased significantly (P \ 0.05).

Pectinolytic enzymes, predominant as pectin lyases, were

produced by pectinolytic species and released into the

rumen environment, degrading pectin to unsaturated di-

and trigalacturonides [35] which are further metabolized

intracellularly to generate a high yield of acetate [14].

Thus, higher pectin lyases associated with AH, CSP, and

Pe suggested the increments of pectinolytic bacteria pop-

ulation under these treatments. As expected, the amylase

activities were significantly higher with CSS and St than

the other treatments (P \ 0.05).

Comparison of Bacterial DGGE Profiles and Sequence

Analysis of Specific Bands

The bacterial DGGE profiles were clearly divided into

three clusters (Fig. 1): CSS and St in group 1; CS in group

2; and Pe, AH, and CSP in group 3. The members of each

group exhibited similarities greater than 71, 80, and 72 %

to each other, respectively. The cluster analysis indicated

that starch supplementation (CSS and St) apparently

diverted the patterns of the DGGE bands to form an out-

group with 65 % similarity with groups 2 and 3 (Fig. 2).

The CS cluster (i.e., group 2) exhibited approximately

67.5 % similarity with group 3. However, the combination

of CS with pectin as the substrate (CSP) resulted in the

band patterns being closely grouped with those of AH.

Based on the comparison of the microbial responses to CSP

and CSS using the microbial structure of AH as the stan-

dard, the results indicate, from a microbial ecological

aspect, that pectin but not starch is one of the important

nutritional differences that exist between CS and AH.

As shown in Fig. 1, one of the specific bands (B1)

located at the top of the gel was found only in the AH- and

pectin-added treatments, and the other two bands (B2 and

B3) were associated with starch treatments. Because the

distinct bands may represent the core species related to

pectin or starch digestion, these were cloned and sequenced

to characterize the taxonomic relationships. Because we

Table 2 Effects of specific substrates on fermentation parameters and enzyme activities at 24 h of in vitro incubation

Item# Treatments* SEM P value

CS AH CSP CSS Pe St

Total VFA (mmol) 23.6c 30.1b 33.3a 32.2ab 19.6d 17.9d 0.5 \0.01

Acetate 17.2c 21.9b 25.3a 22.5b 16.1c 12.5d 0.4 \0.01

Propionate 4.0b 5.6a 5.5a 5.8a 1.8c 1.8c 0.1 \0.01

Butyrate 2.4c 2.5c 2.6c 3.9a 1.7d 3.6b 0.0 \0.01

Acetate/propionate 4.3cd 3.9d 4.6c 3.9d 9.0a 6.9b 0.1 \0.01

DMD (%) 47.3d 66.6b 61.5c 62.5c 100a 100a 0.6 \0.01

Amylase 2.7b 4.3b 4.7b 11.7a 2.4b 11.5a 1.0 \0.01

Pectate lyase 0.85c 1.81b 2.58a 0.43cd 0.80c 0.01d 0.12 \0.01

a–d Means with different letters with a row differ (P \ 0.05)
# VFA volatile fatty acids, DMD dry matter digestibility

* CS corn stover, AH alfalfa hay, CSP corn stover and pectin, CSS corn stover and corn starch, Pe pectin, St corn starch

Fig. 1 PCR-DGGE fingerprints of bacterial 16S rRNA gene frag-

ments from the DNA obtained from the rumen fluid from in vitro

fermentations with specific substrates. The fragments were amplified

using the primers GC-338F and 533R. The treatments are indicated at

the top of the lanes (CS corn stover, AH alfalfa hay, Pe pectin, St corn

starch, CSP corn stover and pectin, CSS corn stover and corn starch).

The numbered lanes correspond to the treatment replicate number

shown in Fig. 2. The distinct bands that appear to be only correlated

to pectin or starch metabolism are indicated with arrows (B, band)
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focused on species related to pectin digestion, more clones

from B1 than B2 and B3 were selected to perform the

sequencing analysis. Not surprisingly, the identified bands

generated multiple reading sequences, and the taxonomic

information of these sequences is shown in Table 3.

The bands that migrated to the same locations on the

DGGE gel are likely to have the same identity at the genus

level [5]. The sequences obtained from B1 were dominated

by species of Treponema, whereas B2 and B3 were domi-

nated with species of Prevotella, suggesting the important

role of these species in pectin and starch digestion, respec-

tively. Clones (18–22, 25–26, and 37–38) assigned to other

genera were also recovered from the three identified bands.

These may originate from species that are related to pectin

and starch metabolism or may be a result of the amplifica-

tion of a heteroduplex of the 16S rRNA gene [5].

To date, only three species of the genus Treponema have

been described: T. bryantii [28], T. saccharophilum [23],

and T. zioleckii [25]. A phylogenetic study conducted by

Bekele et al. [3] suggested the existence of distinct

members of this group, the majority of which remains

uncultured. Our sequencing results from B1 confirmed the

findings reported by Bekele et al. [3] and suggest that

various members of Treponema may be extensively

involved in pectin digestion. It has been reported that T.

zioleckii ferments only pectin and lacks the ability to utilize

starch [25]. Although both pectin and starch support the

growth of T. saccharophilum in a monoculture environ-

ment, Liu et al. [18] found that the addition of starch poorly

supported the growth of the species in a mixed culture

environment, suggesting that it is a specific pectinolytic

bacterium and may play an important role in pectin

digestion. One clone (No. 15) that showed 99 % similarity

with T. saccharophilum was recovered from B1, further

confirming the implication of the previous study [18].

Relative Abundance of Typical Ruminal Bacteria

The relative abundances of the classical ruminal bacterial

species are shown in Table 4. The relative proportions of

the Treponema group in the total rumen bacteria were as



acetate as a major end product of pectin fermentation. Using

two small pectinolytic spirochetes (strains 692 and 791)

isolated from the rumen, Ziołecki and Wojciechowicz [43]

found that both strains growing fairly rapid on pectin but not

on starch, and that strain 692 could only utilize pectin as an

energy source. Wojciechowicz and Ziołecki [36] described

three isolated large rumen Treponema members (strains 606,

709 and 710) with outstanding feature of pectinolytic

activity. Pectin is decomposed by Treponema strains via

trans-elimination mechanism, yielding a mixture of satu-

rated and unsaturated degradation products. Similar to T.

saccharophilum, all the above-mentioned strains produced

acetate as a major end product of pectin fermentation with

no propionate and butyrate produced [42, 43], consistent

with the higher acetate production with Pe and CSP treat-

ments (Table 2). Based on these pure culture-based studies

and our molecular-based investigation, it is reasonable to

speculate the existence of distinct members of rumen

Treponema involved in the rumen pectin digestion.

However, it should be noted that the CS treatment also

supported a relatively significant growth of the Treponema

group that is similar to that found using pectin alone as the

substrate. Moreover, the proportion of the Treponema

group found in the treatment of CS plus Pe was equal to the

proportion found with the CSP treatment, suggesting the

existence of two groups of Treponema in terms of substrate

utilization: one group is highly specialized in pectin utili-

zation, and the other group is involved in fiber metabolism.

Rumen spirochaetes, which are predominantly Treponema

[24], have often been observed during the study or isolation

of cellulolytic bacteria [30].

T. bryantii is likely a representative of the Treponema

group that does not favor pectin utilization but is involved

in fiber digestion. In the present study, the highest

Table 3 Identification of PCR-DGGE bands

Band Clone ID Species (GenBank accession no.) % Similarity

B1 1–3 Treponema porcinum strain 14V28 (NR_042942) 92

4–7 Treponema bryantii strain RUS-1 (NR_104781) 95



population of T. bryantii was observed with the CS treat-

ment (P \ 0.05), followed by AH, CSP, and CSS, and

neither pectin nor starch alone supported a high growth of

this species. Although cellulose did not support the growth

of T. bryantii, Stanton and Canale-Parola [28] showed a

beneficial interaction of T. bryantii with the cellulolytic

bacterium F. succinogenes. F. succinogenes and R. albus

are able to degrade pectin through secreted pectate lyases

[4]. Gradel and Dehority [10] also demonstrated that the

cellulolytic strain R. flavefaciens B34b and R. albus 7 had

partial ability to degrade pure pectin or pectin in alfalfa.

However, the growths of cellulolytic species were not

supported by pectin alone, probably because they had very

limited ability of pectin utilization [10].

P. ruminicola is well-known ruminal amylolytic bacte-

ria [30] and have also been reported as important rumen

pectinolytic bacteria [10]. The population of P. ruminicola

was significantly higher with the Pe compared with the St

treatment (P \ 0.05), and the addition of starch to CS even

reduced the proportion of the species compared to that

obtained with CS alone. It has been reported that P. ru-

minicola can efficiently utilize pectin when this species is

co-cultured with a cellulolytic species [9].

The present study provides the first exploration of the

specific relationship of the Treponema group with pectin

digestion in vitro using a molecular-based method.

Although ruminal bacteria can grow on a relatively broad

range of substrates under pure culture conditions, popula-

tions of P. ruminicola were found to be stimulated by

pectin rather than starch, suggesting that it may more likely

function as pectinolytic bacteria in a mixed-culture envi-

ronment. The results obtained in the present study may

expand our understanding of pectin digestion from a ru-

minal ecological aspect. Further studies are needed to

evaluate the role of Treponema in vivo, and the isolation of

new species of Treponema is required to fully explore the

ecological mechanism underlying the digestion of pectin

by these species.
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