Mud crab glutamate dehydrogenase: molecular cloning, tissue expression and response to hyposmotic stress Jing-Ying Lu · Miao-An Shu · Bing-Peng Xu · Guang-Xu Liu · You-Zhi Ma · Xiao-Ling Guo · Yu Liu GDH. | · · · · · · · · · · · · · · · · · · · | | |--|---| | | | | , E, | GDH , | | B | S. paramamosain | | | | | | | | | Materials and methods | | | | | The second secon | | | | | | | H S. paramamosain , , ± , | | | (+) H | | | $(\ldots \pm) \ldots \ldots \ldots H^{1},$ | | | | | | , | | | · · · · · · · · · · · · · · · · · · · | | | \pm , \times . Ruditapes philip | | | pinarum | | | puurun | | | | | and the second of o | Methods | | en antre de la companya de la compa
La companya de de la companya de la | Wethous | | (HE , , , , , , , , , , , , , , , , , , | | | | | | μ , α 🕽, Η , | | | | and a second of the entering of the company of the contract of the contract of the contract of the contract of
The contract of the | | The same of sa | | | H | | | H | (M E | | | (M, E | | | | | GDH . F | | | Litopenaeus van- | | | namei | | | GHD | | | Eni | | | Eri- | | | ocheir sinensis H | | | CDH | | | , , , , , , , , , , , , , , , , , , , | | | Scylla paramamosain | | | * * | | | | · · · · · · · · · · · · · · · · · · · | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | and the second of o | | | | CDH M | | | GDH | | Constitution of the Consti | | | | CDH C | | | M | | , , , , , , , , , , , , , , , , , , , | M | GDH GDH | | 1 (+ 3 + | |---|--| , | | | | (| | | | | | | | ±E M | | | ±E M , GDH , GDH , | | | , , | E. sinen- | | | sis L. vannamei GDH . Fenneropenaeus chinensis L. vannamei GDH | | | · · · · · · · · · · · · · · · · · · · | | | S. paramamosain | | | E. sinensis L. vannamei F. chinensis | | S. param | a- GDH S. paramamosain | | | | | | | | |) , , , , , , , , , , , , , , , , , , , | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | GDH S. paramamosain | GDH | | S. paramamo | | | | | Fig. 4 Scylla paramamosain GDH National Scylla paramamosain Kenopus laevis (M) Riptortus pedestria (K) Fenneropenaeus chinensis (K) Papilio xuthus (K) Drosophila melanogaster GDH (Misgurnus anguillicaudatus (Misgurnus californicus (Misgur Fig. 5 GDH Scylla paramamosain Hem Hea An In Mu Gi Hep Bars | Mayetiola destructo (K) Mus musculus | |--| | (M Homo sapiens (,) | | Oncorhynchus mykiss (, Monop- | | terus albus (Carassius auratus red var | | (Bombyx mori (M Culex quinquefasciatus (M | | Culex quinquefasciatus (M /) | | S. paramamosain (K.M | | xuthus (K, Litopenaeus vannamei GDH | | (M L. vannamei GDH . 🎉 | | Aedes aegypti (M | | Danio rerio GDH (M) | | GDH , | | |--|--------------------------------| | | | | | | |
· · · · · · · · · · · · · · · · · · · | | |
$P < \{ \}$ | , , , ! , , , , , , , , | |
· · · · · · · · · · · · · · · · · · · | | | | | | ., . , . % % . | | | | | | // · · · · · · · / · · · / · · / · · · / · | | | | | |
<i>o</i> / ₀ | | () Fig. 6 a GDH Scylla paramamosain b H S. paramamosain Bars EM , different letters (n=P-1) $(P < \frac{1}{1})$ | and the form of the second sec | |--| | | | | | | | $P < \{1, \dots, P\}$ | | $P \leftarrow H \qquad \qquad$ | | and the second second and the second second | | 1,, | | P < P < 1 | | and the second of o | | | | (,), | | | | and a local | | | ## Discussion | H | |--| | H S. paramamosain | | ······································ | | (| | expression of the contract | | ., | | S. paramamosain | | Macrobrachium amazonicum L. vannamei | | | | | | $(x,y) \in \mathbf{X}(x,y) \times (x,y) $ | | Scylla | | serrata | GDH S. paramamosain Tigriopus californicus I. vannamei E. sinensis Tigriopus californicus L. vannamei E. sinensis GDH $\epsilon = \epsilon_{\perp} + \epsilon_{\perp}$ Table 2 Scylla paramamosain (±E M) | . (.) | M (, , ,) | ε, · .) · Η | |-------|---|--| |
1 | ,,, ±,,, | , , ±, · . | | | + 11 · · | , .,.± . | | , | 11', ± 11' | . ±, , , , , , , , , , , , , , , , , , , | | | 1 1 ± 111 · · · · · · · · · · · · · · · | イト ± //
ハト ± | | | | .,± . | | ı | ± | , ± . | | | 1., ± 11. | | . . . (3 . | Table 2 | | | | | |--------------|---|---|---|--| | , | | | | M M. | | | , (, ,) | М., (т.) | (, ,) H | H | | | | ± , . | . ± | M | | | 1 | ± ,,, | ± 11 | S. paramamosain | | | , | , | , ±,, ii | L. vannamei E. sinensis | | | ** | `^_±\ ^` | ., <u>±</u> , | | | | , | * | 生, 、, | | | | • • | ・ | , = .
, , , ± | ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, | | | | 1 ' 1 1 | ± , | | | | | . ± | , ± | , t () () () | | | | ± 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | (P < GDH L. vannamei | | | , | 11 ± 111 | ±, , | + K ⁺ | | | | | , ±, ., | GDH E. sinen- | | , . | | | ± , | sis | | | ı | | , ±, | H T. californicus GDH | | | | ± 1, | , , ±, ,, | The Conference of Conferen | | | ., | ± 111 × 11 | ± | | | | • | 1 · · · ± · · | ± | | | 4 | ** | 1 1 , ± 1 11 | ± | T. californicus S. | | • | I | | , , ±, , , | paramamosain T. californicus | | | | (± | , ± , | | | | • | 1 11 ± 1 11 | · ± · · | GDH T. californicus | | | ** | 111/ = 111 | / | S. par- | | | • | + | , ±, | amamosain () | | Е | | 1 11 [±] 1 11 ± ± | 1, ± 1, | GDH | | | ı | ± , , , . | , <u>,</u> ± | | | | | ± | , , , ± , , , , | | | | | ± | ± , . | E. sinensis, GDH | | | , | ± , ± | ± + + + + + + + + + + + + + + + + + + + | H | | | | ± | . · 、 ± . , · 、 · · | , | | I | | . , ± 1, | ±., ., . | | | | | ±, ±, | ± 1, " | | | | • | ± , , , , , , | . ± | | | | ** | . , , ± , | | | | | • | , , , ±, | ± , , , , , , , , , , , , , , , , , , , | S. paramamosain | | | • • | + \ ± + , · · · | <u> </u> | H , GDH | | | . , | | $(n = 1 \cdot P < 1 \cdot 1)$ | paramamosain | | | | | , , | | | GHD. | | | | | | | | | | GDH | | | | | | | | * * | | GDH | | 1 | | | | | GDH O | | | , | , , , , , , , , , , , , , , , , , , , | | nosain, | | | | *** * * * * * * * * * * * * * * * * * * | L. v | annamei E. | | | | | | | Macrobrachium olfersii | | · · · · · · | Н | | | | | , , k | | | · · · · · · · · · · · · · · · · · · · | | | | | , 4 | | | | Table 3 | | , . | | | | , | | |-----------|------|-----|----|---|----|---|--| | Scylla po | ıran | nam | os | a | ir | ı | | | Scylla paramamosain | 1 | ·, · · · (, · ·) | | |---------------------|--------------|---|--| | , | | , () , | | | (, , ± E M) | | $\mathcal{L}_{\mathbf{x}} \pm_{\mathbf{x}} \mathcal{L}_{\mathbf{x}} = \{0, \pm_{\mathbf{x}}, \dots, 0, \pm_{\mathbf{x}}, \dots, \pm_{\mathbf{x}}\}$ | | | | .1 | | | | | • | | | | | | | | | | | | | | | <i>y</i> **: | | | | | | | | | | E | | | | | \mathbf{E} | | | | (n = 1) | | | | Table 4 Scylla paramamosain $\pm E M_{1}$ | ļ | (,) | | | | | | |---------|---|-----|--|--|--|--| | (, ,) | , () | | | | | | | ** | | - | | | | | | . 1 | | | | | | | | | | | | | | | | | $\pm \ldots$, $\pm \ldots$ | | | | | | | | \pm , | | | | | | | , | | , 、 | Ξ | | | | | | | | E | | | | | | | | 1.1 | $\pm i \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | (P < 1)S. paramamosain ... S. paramamosain M. olfersii M. amazonicum L. van- GDH S. paramamosain Palaemon northropi T. californicus $_{0}$, GDH , $_{0}$ $_{0}$ $_{0}$ | | MH | | Macrobrachium olfersii (| |-----|--|-------|-----------------------------| | | Macrobrachium amazonicum | | H M H H H Crassostrea gigas | | ., | rata , M , | . ^ _ | H. M | | . 1 | M M()) | ı | E M (E , | | | M | | naeus vannamei | | | AND 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | Litopenaeus vannamei |