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AMP-activated protein kinase is required for the
anti-adipogenic effects of alpha-linolenic acid
Xihong Zhou, Weiche Wu, Jingqing Chen, Xinxia Wang and Yizhen Wang*
Abstract

Background: n-3 long chain polyunsaturated fatty acid (n-3 LC PUFA) increases β-oxidation and limits lipid
accumulation in adipocytes. The current study was conducted to determine whether their precursor alpha-linolenic
acid (ALA) could also exert the above effects and how AMP-activated protein kinase (AMPK) was involved.

Methods: AMPKα1−/−, AMPKα2−/− mice and wild-type (WT) mice were fed a high-fat diet (HFD) or HFD with ALA. Body
weight was recorded weekly and serum was collected. Adipocytes size and expression of key players involved in
mitochondrial biogenesis and lipid oxidation were also measured.

Results: Our results showed an elevated serum adiponectin level and a decreased leptin and insulin level in WT mice
fed HFD with ALA when compared with WT mice fed HFD. In addition, dietary ALA decreased epididymal adiposity
and adipocytes size in WT mice. At protein level, mitochondrial genes (peroxisome proliferator-activated receptor
gamma coactivator 1 alpha [PGC1α] and nuclear respiratory factor-1 [nrf1]) and β-oxidation related genes (carnitine
palmitoyltransferase 1A [CPT1a] and peroxisome proliferator-activated receptor alpha [PPARα]) were upregulated by
dietary ALA in epididymal fat of WT mice. Consistently, dietary ALA also increased mitochondrial genomic DNA copy
numbers. Moreover, lipogenesis was repressed by dietary ALA, indicated by that expression of fatty acid synthase (FAS),
acetyl CoA carboxylase (ACC) and stearoyl-CoA desaturase 1 (SCD1) were decreased. However, these aforementioned
effects were abolished in the AMPKα1 and AMPKα2 knockout mice.

Conclusions: Our results suggest that ALA could improve adipose tissue function and its anti-adipogenic effects are
dependent on AMPK.

Keywords: Alpha-linolenic acid, AMP-activated protein kinase, β-oxidation, Mitochondrial biogenesis, Adipose tissue
Introduction
Many studies have demonstrated that n-3 long chain
polyunsaturated fatty acid (n-3 LC PUFA) could reduce
adiposity by improving the dysfunctional lipid metabol-
ism induced by HFD, such as stimulation of lipolysis and
inhibition of lipogenesis in liver [1,2], as well as stimula-
tion of fatty acid oxidation in muscle [3]. Moreover, n-3
PUFA could also decrease lipid accumulation in adipo-
cytes [4,5]. And n-3 PUFA exerts these effects not only
by upregulating mitochondrial biogenesis and increasing
β-oxidation [6], but also by reducing cellularity of white
adipose tissue [7]. Although most of the studies declare
that eicosapentaenoic (EPA) and docosahexaenoic (DHA)
acids exert more pronounced effects on the reduction of
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adipose tissue mass compared with their precursor alpha-
linolenic acid (ALA) [6-8], other studies suggest that ALA
could also increase fatty acid oxidation both in vivo [9,10]
and ex vivo [11]. Importantly, ALA without converting to
DHA and EPA, could reduce lipid accumulation [12].
Given that ALA supplementation could increase ALA

content in adipose tissue [9] and the critical role of n-3
PUFA in ameliorating adipose tissue dysfunction, it is
demanding to understand how n-3 PUFA modulates
fatty acid metabolism in adipose tissue. It is widely ac-
cepted that the effects of n-3 PUFA are mainly mediated
by peroxisome proliferator activated receptors (PPARs)
especially PPARα, since n-3 PUFA are ligands for PPARs
[13]. However, other studies report that long chain fatty
acids could also regulate carnitine palmitoyltranferase I
(CPT1a), which is the rate-limiting enzyme in mitochon-
drial fatty acid oxidation in a PPARα-independent manner
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[14,15]. In addition, n-3 PUFA also has many effects in-
cluding stimulation of 5′AMP-activated protein kinase
(AMPK) in adipose tissue [16]. AMPK is a heterotri-
meric enzyme that plays key roles in energy homeosta-
sis of adipose tissues. For decades, the role of AMPK in
the regulation of white adipose tissue metabolism in
terms of triglyceride (TG) storage and release, mito-
chondrial biogenesis and oxidative capacity has been
studied [17]. AMPK could directly interact and phos-
phorylate PGC-1α [18], which stimulates the transcrip-
tional program of mitochondrial biogenesis and oxidative
metabolism [19]. It is also well known that AMPK reg-
ulates lipogenesis mainly by phosphorylating acetyl
CoA carboxylase (ACC), as well as regulates fatty acid
oxidation through CPT1 [20]. Considering the poten-
tial roles of AMPK regulatory axis involved in induc-
tion of the metabolic switch in adipocytes by n-3
PUFA, the current study was conducted using AMPKα1
or AMPKα2 knockout mice to determine whether cata-
lytic subunit (α1 and α2) of AMPK plays a vital role in
these effects.

Materials and methods
Animals and diets
AMPKα1 and AMPKα2 knockout mice which were both
generated from C57BL/6 mice were originally purchased
from the Jackson laboratory. The C57BL/6 mice were
used as control. All animals were maintained with un-
restricted access to water and food under controlled
temperature (22 ± 1°C), humidity and air flow condi-
tions, with a fixed 12-h light–dark cycle (light on from
0800 h to 2000 h). Mice deficient in the catalytic sub-
unit of AMPKα1 or α2 and wild type mice (nine weeks
old with an average weight of 26.3 g) were fed on ei-
ther a 45% high-fat diet (HFD) or a HFD containing
10% ALA (purchased from Aladdin, Ltd (Shanghai,
China)), maintaining the total amount of fat at 45%.
The HFD are consisted of 45% (kcal%) fat (lard and
soybean oil), 20% protein (casein and L-cystine) and
35% carbohydrate (corn starch, maltodextrin, sucrose
and vitamin). During the experiment (12 weeks), body
weight was recorded weekly and food intake was mea-
sured every 3 days. At the end of the experiment,
blood was taken from the retro-orbital sinus after 4 h
fasting and after cervical dislocation, epididymal and
inguinal fat pad were separated and weighted, and
then were either immediately fixed in formaldehyde
solution for morphology observation or snap-frozen in
liquid nitrogen. The present study was approved by the
Committee of Experimental Animal Care, Zhejiang Uni-
versity (Hangzhou, China) (Project No. 2012CB124705).
All animal care and experimental procedures were under
the supervision of the Committee of Experimental Animal
Care.
Plasma biochemical assays
The serum biochemical assays were performed with
commercially available kits: adiponectin, leptin and insu-
lin (Cusabio Biotech Co., Ltd).

Measurement of AMPK activity
AMPK activity was assayed using a CycLex AMPK Kinase
Assay kit (Cyclex, Japan, Cat#CY-1182). After adipose tis-
sue was homogenized, the resulted supernatant was col-
lected and the relative AMPK activity was determined
according to the manufacturer’s instruction.

DNA content in adipose tissue and Mitochondrial (mt)
DNA analysis
Adipose tissue was weighed and then was digested
with proteinase K, and DNA was extracted with phenol:
chloroform. DNA content was measured by spectropho-
tometry (λ = 260 nm). mtDNA content relative to nuclear
DNA (nDNA) content was assess by qPCR, using 2 ng of
total DNA as template and primers for cytochrome c oxi-
dase 2 (COX2, mitochondrial genome; forward: ataac
cgagtcgttctgccaat; reverse: tttcagagcattggccatagaa) and
ribosomal protein s18 (rps18, nuclear genome; forward:
tgtgttaggggactggtggaca; reverse: catcacccacttacccccaaaa)
were used.

Histology and cell-size measurement
Tissue samples of epididymal and inguinal white adipose
tissue were fixed with 4% paraformaldehyde and paraffin
embedded. Sections of 8 μm were stained with
hematoxilin-eosin (HE) and then mean adipocyte surface
area was analyzed. Six different representative micro-
scopic fields were captured manually from sections of
each sample (three samples per group) and cell size was
analyzed using Image-pro plus 6.0 software. The mean
adipocyte area was calculated from over 100 cells per
animals in each group.

Immunoblotting
Adipose tissue was homogenised and lysed on ice for
30 min in lysis buffer with 1‰ DTT, 5‰ PMSF and 1‰
protease inhibitor (KeyGEN BioTECH, Nanjing, China).
The tissue extract was cleared from fat, nuclei and deb-
ris by centrifugation at 13,000 × g for 10 min. Protein
content was determined by BCA assay and identical
amounts of proteins (20 μg/lane) were separated by
SDS-PAGE and blotted onto nitrocellulose membranes.
The membranes were blocked with skim milk. Then pri-
mary antibody against AMPKα1, phospho-AMPKα2, FAS,
ACC, PPARα, PGC1α (Abcam), phospho-AMPKα1, nu-
clear respiratory factor-1 (nrf1), stearoyl-CoA desaturase 1
(SCD1), CPT1a (Santa Cruz), uncoupling protein 2
(UCP2), AMPKα2 (GeneTex), Glut4 (SAB) and GAPDH
(Boster, Wuhan, China) were applied overnight at 4°C.



After incubating with the secondary antibody for 1 h at
room temperature, the membrane was detected using the
EZ-ECL (Biological Industries).

Statistical analysis
All data were expressed as mean ± SE. Data were ana-
lyzed by a one-way analysis of variance (ANOVA) with
Tukey’s post hoc test using SPSS (version 16.0; SPSS,
Inc.) and significance was accepted at P < 0.05.

Results
Effects of ALA on serum insulin, adiponectin and leptin
concentration in WT, AMPKα1−/− and AMPKα2−/− mice
As shown in Table 1, dietary ALA significantly decreased
serum insulin and leptin concentration of WT mice,
while increased serum adiponectin concentration. How-
ever, such changes were not observed in AMPKα1−/−

and AMPKα2−/− mice when fed with ALA.

Effects of ALA on HFD-induced fat deposition in white
adipose tissue required AMPK
As shown in Table 2, ALA supplementation significantly
decreased end point body weight in WT, while ALA
supplementation did not significantly affect body weight
gain in AMPKα1−/− and AMPKα2−/− mice. Dietary ALA
significantly decreased epididymal fat accumulation
and increased DNA copies in WT mice with HFD,
while such effects were not observed in AMPKα1−/− and
AMPKα2−/− mice. Although inguinal fat content tended
to be decreased by ALA in all genotypes, such changes
did not show statistical significance. Our results also
showed that cell size of both epididymal and inguinal



Table 2 Effects of ALA on fat depots of WT, AMPKα1−/− and AMPKα2−/− mice fed HFD

WT AMPKα1−/− AMPKα2−/−

HF HF-A HF HF-A HF HF-A

Final BW (g) 42.6 ± 3.1 32.6 ± 1.8ab 43.1 ± 3.0 42 ± 3.2 45.5 ± 3.4 44.2 ± 3.7

Epididymal

weight (mg) 2270 ± 158 1224 ± 98ab 2242 ± 201 2137 ± 198 2349 ± 178 2146 ± 184

DNA (μg/mg) 0.32 ± 0.04 0.67 ± 0.05ab 0.29 ± 0.05 0.35 ± 0.06 0.29 ± 0.05 0.36 ± 0.07

Inguinal

Weight (mg) 1090 ± 42 1037 ± 57 1097 ± 45 1058 ± 55 1102 ± 49 1072 ± 59

DNA (μg/mg) 0.42 ± 0.05 0.5 ± 0.06 0.36 ± 0.04 0.39 ± 0.06 0.38 ± 0.05 0.41 ± 0.07

Note: The values are means ± SE. aP < 0.05 for difference between different genotypes with HF-A diet; bP < 0.05 for difference between WT mice. BW, body weight.
HF, mice fed high-fat diet; HF-A, mice fed high-fat diet with ALA.
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biogenesis and increase β-oxidation in white fat [6],
but also limit hyperplasia and hypertrophy of adipocytes
[7]. Consistently, we found that ALA, the precursors of
n-3 LC PUFA, could also reduce the accumulation of fat
mass induced by HFD mainly through increasing the
content of PGC1α, nrf1, UCP2 and CPT1a in epididymal
fat, but less effects was observed in inguinal white fat.
The site-specific effects of n-3 PUFA on adipose tissue
has been demonstrated for decades [4,21,22] as it is
widely accepted that the unfavorable metabolic effects of
adiposity were particularly resulted from the expanded
Figure 1 Adipocyte size in WT, AMPKα1−/− and AMPKα2−/− mice. A, a
−/− mice fed HF diet; D, d, WT mice fed HF-A diet; E, e, AMPKα1−/− mice fe
area in WT mice, AMPKα1−/− and AMPKα2−/− mice (uppercase represents e
fed high-fat diet; HF-A, mice fed high-fat diet with ALA.
visceral fat depot [23]. However, the hypertrophy of both
subcutaneous and visceral fat depots was both limited
after feeding rats for 6 months [24]. As a result, the
effects of n-3 PUFA on adipose tissue may also dependent
on the duration of dietary treatment.
AMPK is involved in the regulation of white adipose

tissue metabolism [17] and is also one of the important
mechanisms that mediate the effects of n-3 PUFA on
lipid catabolism [16]. Our results showed that the bene-
ficial effects of ALA on lipid metabolism in epididymal
fat were diminished in the absence of either AMPKα1 or
, WT mice fed HF diet; B, b, AMPKα1−/− mice fed HF diet; C, c, AMPKα2
d HF-A diet; F, f, AMPKα2−/− mice fed HF-A diet; G, g, mean adipocyte
pididymal fat; lowercase represents inguinal fat; cell size, μm2); HF, mice



Figure 2 AMPK activity, protein expression of mitochondrial biogenesis and β-oxidation related genes in WT, AMPKα1−/− and AMPKα2
−/− mice. HF, mice fed high-fat diet; HF-A, mice fed high-fat diet with ALA. (a, c, e, g, activity of AMPK and protein expressed in epididymal fat;
b, d, f, h, activity of AMPK and protein expressed in inguinal fat). The values are means ± SE. #P < 0.05 for difference between different genotypes
with HF-A diet; *P < 0.05 for difference between WT mice.
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AMPKα2. These results further confirmed that AMPK
was crucial for the effects of n-3 PUFA on adipocytes.
Previous studies suggest that the α1 catalytic subunit of
AMPK accounts for most of the activity of this kinase in
white adipose tissue [25,26]. However, loss of AMPKα1
do not affect the phosphorylation of ACC and HSL in
white adipose tissue [27]. Interestingly, lipid deposition
in white adipose tissue induced by HFD is increased in
AMPKα2 knockout mice. Accordingly, we speculated
that both α1 and α2 subunit of AMPK were critical for
the effects of n-3 PUFA on adipocytes [28].
n-3 PUFA was found to increase PPARα activity as

they are intrinsic ligands for PPARs [29-31] and activa-
tion of PPARα promotes mitochondrial lipid oxidation



[32]. We found that PPARα expression was increased in
epididymal fat by ALA treatment of WT mice instead of
AMPKα1 or AMPKα2 knockout mice. Since previous
studies demonstrate that AMPK activation enhances the
activity of PPARα [33,34], AMPK could be an upstream
factor which affects the interaction of n-3 PUFA and
PPARα. PGC-1α
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