	•		1 (C	1).		•	•	
H H	L , *, 1, J , F ,	, 1, H		, F	, M	Z		Н.,

Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China

Jinhua Academy of Agricultural Science, Jinhua 321000, PR China College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China

ARTICLE INFO

Article history:

	26 F	. 20)17	
Α	13 M	2017	,	
Α,,		14 M	2017	
Keywo	ords:			
Apis c				
c				
N				
В				

Α.			,				
Н ,	fl	, ,				C 1	
,	Apis cerana.			fl		$(\lambda = 332)$	
fi ,					. D		, $\Delta H > 0$, ΔS
> 0,	fl		fl		C 1 .		,
							. M -
C .	(CD)					α- C 1.	
	C 1 50%	I			(<i>K_A</i>)		β-

Ν C $L^{-1}I$ 1 1 I TM fi N 2+-N A 15 . A В (H7.4) 72 C 1 16. fi C fi -20 °C .F (AO) LD₅₀ 72 69.68 17. 2.3. Multiple fluorescence spectra of CSP1 protein with imidacloprid (1) FF-5301 fl -) 18. fl , J). 281 fl 5 19,20. 290-500 L^{-1} В 1 μ (H 7.4), C 1 L^{-1} CSP8 Plutella xylostella, CSP2 fl 21 , CSP1 Bombyx mori, CSP1 fl, fl 22 , Bemisia tabaci, 23. C 284 K 294 K, fl (2) (F) C C Δλ (λ λ) = 15 60 Α , Apis cerana, fl 24.I (3) (_37 **_**1800 C , J). 190-400 A. cerana 25. A 2.4. Circular dichroism (CD) spectra 26-28, C 1 fl 200-250 CD 1: 0, 1: 0.5 1: 4, C C 1 1 C 1 CD ELCON3 30. , A. cerana, 2.5. Molecular docking analysis 2. Materials and methods C 1 Mamestra brassicae (DB 2.1. Chemicals and reagents M A6 , 1 8) 32 I -MODEL 33. 3D NCBI (: 638014). B (>98% CI F .1(A)). (), . J C 1.0 \times 10 $^{-3}$ $4~^{\circ}C$ (18.2 M Ω , M M D 0 . M 🛾 M D 34. 2.6. Functional inhibition of CSP1 by imidacloprid 2.2. Preparation of recombinant CSP1 protein \dot{L}^{-1} β -CSP1 10 2.3-(1) fl

29.

MD18-

E -32 (+)

CSP1

BL21 (DE3)

fl

C 1				
C 1/		(1:0, 1:1, 1:5, 1:9,	1:13 μ	L^{-1})
	10	L^{-1} β -		
		β-		
	C 1			

3. Results and discussion

3.1. Expression of recombinant CSP1 protein and fluorescence quenching spectra

3.2. Synchronous fluorescence spectra

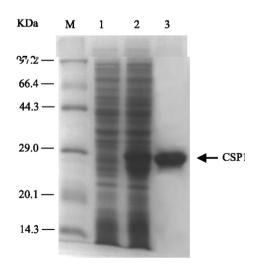


Fig. 1. SDS-PAGE of induced and purified recombinant CSP1 protein. $\ensuremath{\mathsf{M}}$

A F. $2(B ext{ C})$, fl fl - C 1 , fl , \mathbb{F} . 2(C),

3.3. Fluorescence quenching mechanism

$$\frac{F_0}{F} = 1 + K_q \tau_0[Q] = 1 + K_{sv}[Q] \tag{1}$$

F₀ fl ; F fl fl $\tau_0 = 10^{-8}$; $K_{sv} =$

44.

45. A F. 3(B),

(1 μ L⁻¹),

fi

C 1

A 2 A. cerana 46,

3.4. Thermodynamic analysis

300 320

$$\Delta G = -RT \quad K = \Delta H - T\Delta S$$

 $\Delta H = \frac{RT_1T_2 \left(K_{0,2}/K_{0,1}\right)}{T_2 - T_1}$ (3)

(2)

 $\Delta S = (\Delta H - \Delta G)/T$ (4)

 ΔG , ΔH , ΔS , G $\Delta S < 0$, $\Delta H < 0$

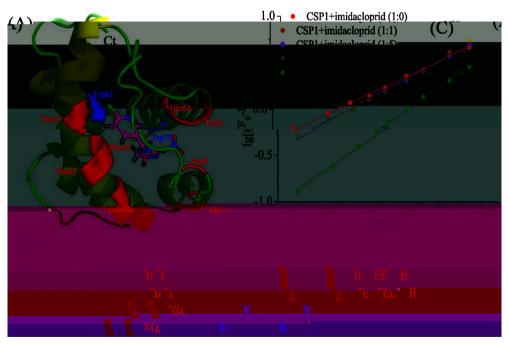
 $\Delta H > 0 \qquad \Delta S > 0,$

46,

3.5. Circular dichroism (CD) spectra

CD					49 .
•		208	222		. CD
		α-			50.
A F .3	B(C),		. C	1	
, .	,			C 1	
			A 2.	4	,
		46	5.		

Table 2


I .	C 1	•
,	N	Е,
	44	-24.1035
G	63	-16.0482
Α	9	-9.4608
	43	-9.3838
Α	40	-8.6277
Н	47	-7.3377
I	62	-6.9446
4	11	-4.0133
- F ·		

3.7. Functional inhibition of CSP1 by imidacloprid

3.6. Molecular docking

A Mamestrabrassicae	C M A6	(DB ID, 1 8)
C 1	·	-MODEL .
	C 1. C M	A6 (1 8)
F . 4(B). A	M D	(, 2),
	C 1	
4	F . 3(A). B	, 8
		C 1.
. ,		(√√ 11, 43,
44, I 62),		(G 63), 2
(A 9 A 40),		(H 47) (F . 3(A)). F
F . 3(A),		(73
82) C	1,	
	fl	
C 1	fl	(F . 3(B)).

F
 C
 C
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

 K_{A} (1: 0) β

26	EC. , HC. C , , , , , , , , I
	, L O 7 (2012) 49472. .M. , G.A. , E
	, J. E . B . 216 (2013)
28	1799–1807. K. , , C , , D , , L , , J.C.N , I
29	H.L. L , C N ,
	C , Apis cerana cerana (H , : A ,), A , E
30	N. , , , , , , , E
21	252–260.
	J. H., L., D., H.O. J., H.C., C., J.M., M., G., G
32	, I . J. B . M 50 (2012) 694–700. M. , C. C , M , . A. J , M G , M
	A. 100 (2003) 5069–5074.
33	I W N C MC I MODEL
34	- , M.H. C , M D :
	, J. M . C 49 (2006) 3315–3321. G
	fl , J. M 881
36	(2008) 132–138. J
37	J
	(Apis cerana), I . J. B . M 56 (2013) 114–121.
39	HOB A 1 Apis cerana, I . J. B . M72 (2015) 430–436. H. L., F , K , C , H , F. H . , C
	3385